GRL 04080208 V.193 3 LILLYBURT COAL PROSPECT 406 50*80' Elkford Beels = t = 1 000 000 (i *= 1 16 mites) SPARWOOD COLEMAN BLAIRMORE Library & Reco BELLEVUE FERNIE PINCHER CREEK LILLYBURT d(Old Tomaile) 602080 WATERTON LAKES NATIONAL PARK Reseville O ANADA U. S. A.

REPORT ON COAL LICENSES 4080 TO 4089 INCLUSIVE KOOTENAY LAND DISTRICT, BRITISH COLUMBIA

EUREKA

5:00

on work done period of June 9,1980 to September 21,1980

Held by : SHELL CANADA RESOURCES LIMITED Operated by CROWS NEST RESOURCES LIMITED Lot 49*20' to 49*23'30" NTS 82G7 Long. 114*41'30"

March 25, 198

1

Author:

W. Brian MCKinstry Geologist Crows Nest Resources Ltd.

9

0510.16

TABLE OF CONTENTS

VOLUME ONE

N. . .

~

LIST OF ILLUSTRATIONS

LIST OF TABLES

LIST OF APPENDICES

1.0	SUMM	ARY	1
2.0	INTRO	DUCTION	3
	2.1	LOCATION AND ACCESS	3
	2.2	GEOGRAPHY AND PHYSIOGRAPHY	3
	2.3	ENVIRONMENTAL CONSIDERATIONS	4
	2.4	TENURE OF LAND AND COAL RIGHTS	4
3.0	WORK	5	
2.0			
	3.1	SUMMARY OF PREVIOUS WORK	5
	3.2	SCOPE AND OBJECTIVES OF 1980 EXPLORATION	6
	3.3	WORK ACCOMPLISHED, 1980	7
	3.4	COSTS OF WORK DONE, 1980	9
4.0	GEOLO	DGY	10
	4.1	REGIONAL GEOLOGY	10
	4.2	LILLYBURT STRATIGRAPHY	11
	4.3	STRUCTURAL GEOLOGY	12
	4.4	COAL GEOLOGY	13

.

ļ

i**i**

5.	0	MINE	ABILITY	AND COAL RESERVES	15
		5.1	RESERV	ES	15
			5.la	CALCULATION #1	15
			5,1b	CALCULATION #2	17
		5.2	MINEAB	ILITY	18
6.	0	COAL	QUALIT	Y	20
7.	0	RECO	MMENDAT	IONS FOR FURTHER WORK	23
8.	0	BIBL	IOGRAPH	Y	24

VOLUMES TWO AND THREE

APPENDICES

۰.,

LIST OF ILLUSTRATIONS

- ENCLOSURE 1 LOCATION MAP OF THE LILLYBURT PROJECT, B.C. . 1:250,000
- ENCLOSURE 2 INDEX MAP TO COAL LICENCES, LILLYBURT PROJECT 1:50,000
- ENCLOSURE 3 REGIONAL GEOLOGICAL COMPILATION MAP 1:50,000
- ENCLOSURE 4 TYPICAL STRATIGRAPHIC SECTION, LILLYBURT, B.C. 1:1500
- ENCLOSURE 5 GEOLOGICAL IN-SITU RESOURCE CALCULATIONS, 1980
- ENCLOSURE 6 GEOLOGICAL IN-SITU RESERVE CALCULATIONS (SOUTH LIMB), 1980
- ENCLOSURE 7 GEOLOGICAL IN-SITU RESERVE CALCULATIONS (NORTH LIMB), 1980
- ENCLOSURE 8 PLAN VIEW OF 1980 TRENCHES

1:20

VOLUME TWO

~

LIST OF APPENDICES

į

.....

APPENDIX I	Application to Extend Term of Licence/Summary of Expenditures
APPENDIX II	1980 Drillhole Program, 1:5000
APPENDIX III	Exploration Data Base Map, 1:5000
APPENDIX IV	Rotary Cutting Descriptions: LBR-200 LBR-201 LBR-205 LBR-217 LBR-218
APPENDIX V	Geophysical Logs: LBR-200 to LBR-218 Inclusive

VOLUME THREE

APPENDIX VI	1979 Rotary Cutting Analyses:
	LBR-2 LBR-3
	1979 Trench Sample Analyses
APPENDIX VII	Geology of Lillyburt, 1980, 1:5000
APPENDIX VIII	Cross-section Grid, Lillyburt, 1980, 1:5000
APPENDIX IX	Cross-sections, Lillyburt, 1980
	700
	1100
	2500
	3100
	3300
	3500
	3900
	4300
APPENDIX X	Structure Contour Map:
	Base of Seam C, Lillyburt, 1:5000
APPENDIX XI	Traverse Survey Map
APPENDIX XII	B.C. Coal Licences Tenure Standing

LIST OF TABLES

 TABLE I
 RAW AND PROXIMATE ANALYSES:
 21

 SEAM C, LILLYBURT, 1979

 TABLE II
 ASH FUSABILITY AND ASH, TRACE AND
 22

 ULTIMATE ANALYSES:
 SEAMS B, C AND D, LILLYBURT, 1979

The Lillyburt coal property is located within British Columbia coal licences 4080 through 4089 inclusive, covering some 2459 hectares of land (Enclosure #2). The licences are located in the northeast end of the Flathead River Valley in southeastern B.C. Access to the property is obtained via the Corbin Valley forestry access road from the Corbin coal loading facilities (15 kilometers) or via the Lodgepole forestry access road from Morrissey Station on the main C.P.R. railway line (45 kilometers; see Enclosure #1). Total rail distance to Roberts Bank, Vancouver, is approximately 1150 kilometers.

The coal licences have been held since 1978 by Shell Canada Resources Limited with operations carried out by its wholly-owned subsidiary, Crows Nest Resources Limited. Exploration to date has included 22 rotary holes, numerous backhoe trenches, geological mapping, ground control and location surveys and photogrammetric mapping.

The property is bounded by normal faults to the north, east, and south and by a thrust fault to the west. An additional thrust fault separates the property into east and west blocks (see Enclosure #3). Limited exploration within the west block suggests a succession of Jurassic-Cretaceous Fernie and Kootenay Formation rocks have been folded into a tight, symmetric, overturned anticlinal structure trending southwest-northeast, plunging steeply northward.

1.

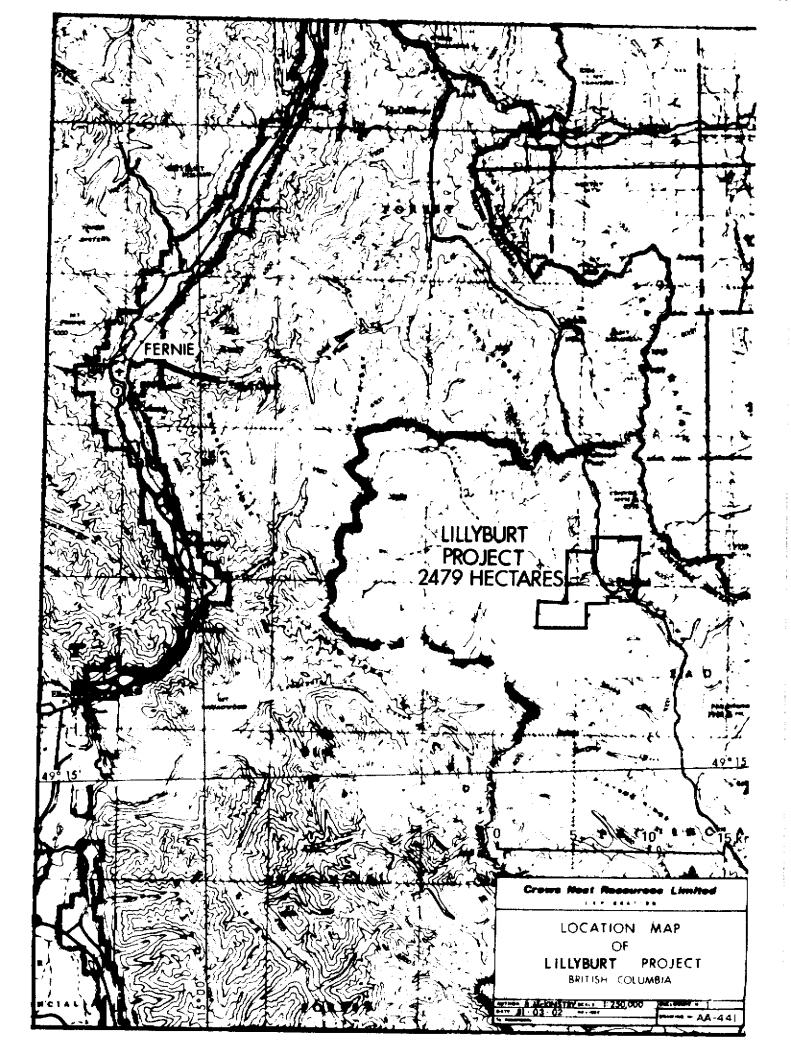
Currently, the east block is of more economic interest. Drilling data indicate Jurassic-Cretaceous Fernie, Kootenay and Blairmore stratigraphy have been folded into an open, asymmetric syncline with axial plane trending east-west, and fold axis plunging eastward. Thickness of the coal-bearing member of the Kootenay Formation is 260 meters on the south limb of this syncline but reduced to 180 meters on the north limb. Within the coal-bearing member, there are five seams of economic interest totalling 40 meters in aggregate thickness. All seams exceed 1 meter; with the thickest averaging 18 meters, being the third seam in an ascending order from the Fernie-Kootenay contact.

Total indicated resources of coal underlying the east block of the property are estimated to be some 133 million tonnes. Geological in place "reserves" are calculated to be 24.8 million tonnes with an overburden ratio of 3.8 cubic meters rock per tonne coal. Resource calculations for the western block have not been attempted due to insufficient data.

Analyses from rotary cuttings for 1979 drilling indicate coal at Lillyburt to be medium volatile bituminous. Quality data from 1980 were not available for submission at the time of this report. However, detailed information from the 1979 drilling program are submitted at this time.

2.

2.0 INTRODUCTION

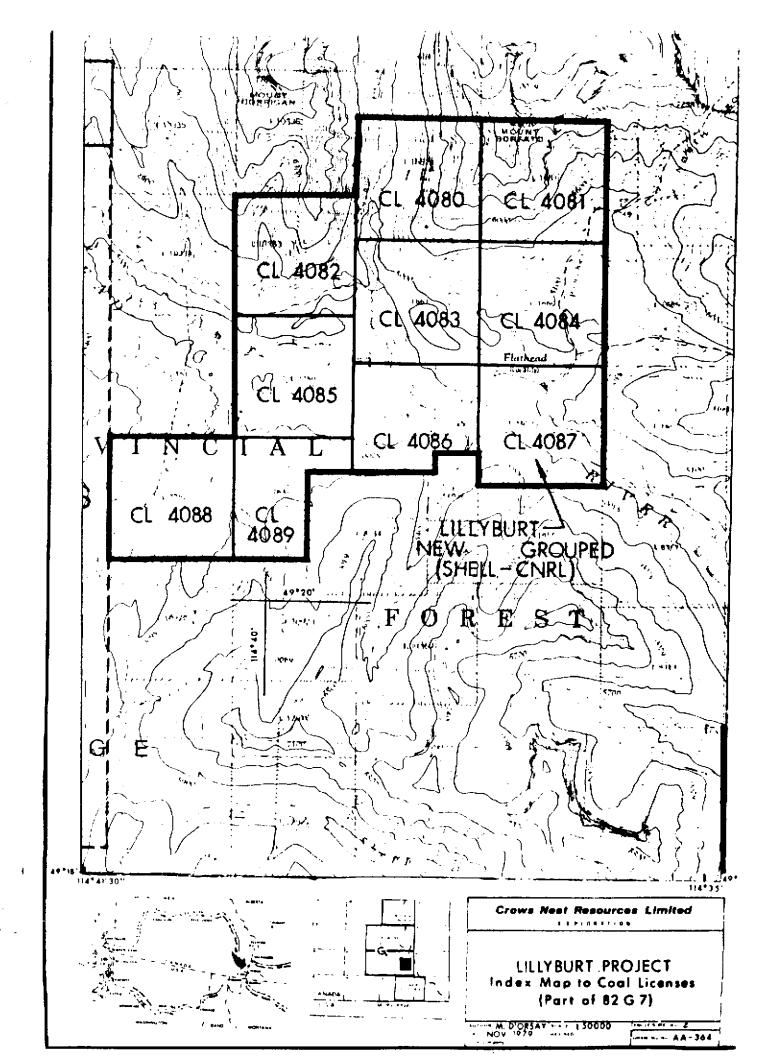

2.1 Location and Access (Enclosure #1) NTS 826/7

The Lillyburt Coal Prospect is located in and near the Flathead River Valley in the Front Range of the Rocky Mountains of southeastern British Columbia.

The prospect is 40 and 15 kilometers from the nearest railway points at Morrissey Station and the Corbin Mine Loop respectively. In addition, it is 60 kilometers by logging and forestry access roads from the towns of Sparwood and Fernie. The port of Vancouver is approximately 1150 kilometers by rail from the property. Most of the project area has been extensively logged providing a dense network of roads throughout the property. These roads have been utilized for drilling access and backhoe trenching.

2.2 Geography and Physiography

Topography in the area is of relatively moderate relief ranging from 1480 meters near the Flathead River increasing to 1720 meters at the northern boundary. The Flathead River forms a natural boundary to the south while Squaw Creek bisects the property into east and west halves. Extensive logging operations have removed a substantial percentage of forest vegetation. The abandoned townsite of Flathead is located on Coal Licence #4087 within the property.



2.3 <u>Environmental Considerations</u>

Extensive logging operations in previous years have greatly facilitated access within the property. Past policy has been to direct drill and trench activity onto log landings or old logging roads wherever possible. This procedure has allowed for minimal environmental disturbance throughout most of the property. As a matter of course, trench sites have been filled in immediately after geological examination. All trenches and drill sites off existing logging roads were fertilized and re-seeded at the end of the field season. A separate report on reclamation work performed within the property is being submitted to the B.C. Ministry of Energy, Mines and Petroleum Resources concurrently.

2.4 Tenure of Land and Coal Rights (Enclosure #2)

The Lillyburt Coal Property consists of 10 B.C. Coal Licences, held by Shell Canada Resources Limited (SCRL) and operated under Crows Nest Resources Limited, a wholly-owned subsidiary of SCRL (Appendix I). The licences (occupying some 2459 hectares of land) were acquired by SCRL in 1978 and have been recently grouped (#243).

3.1 Summary of Previous Work

In 1978, aerial photography and ground control surveys were done on photogrammetric topographic maps which were constructed at a scale of 1:5000 with five-meter contour intervals.

Reconnaissance geological mapping at a scale of 1:5000 was initiated in 1979. Preliminary rotary drilling was carried out on the property in three localities totalling 571 meters. In addition, three backhoe trenches and six hand trenches were dug for a total length of 30 meters.

3.2 Scope and Objectives of 1980 Exploration

Preliminary results from the previous year's work (1979) suggested significant geological in-situ reserves within the Lillyburt coal prospect. Objectives for the 1980 exploration period included:

- (a) completion of geological mapping of the property at1:5000 scale.
- (b) expansion of the drilling program to further delineate the structure and geology of the property and obtain additional coal samples for quality analysis.
- (c) continuation of hand and machine trenching to facilitate geological mapping.

3.3 Work Accomplished, 1980

Nineteen rotary holes were drilled throughout the property (LBR-200 to LBR-218) within the period July 17th and September 20, 1980. Total drilling amounted to 3388 meters. All holes were drilled from the vertical and were reverse circulation, dual-walled (Appendices II & III).

Seventeen of the holes (LBR-200 to LBR-216 inclusive) were drilled with a Gardner-Denver 1700 drill rig while LBR-217 and LBR-218 were completed using a Schramm 65. Cuttings from five holes (LBR-200, LBR-201, LBR-205, LBR-217 and LBR-218) were logged and their descriptions are included with this report (Appendix IV). Coal intersections were sampled and have been sent for analysis to the Crows Nest Resources Laboratory, Fernie, B.C. Holes were geophysically logged by Roke and Davies Exploration at a general scale log of 1:100 and a detail scale of 1:20 (Appendix V). A full suite of logs included:

- Neutron Neutron
- Long Spaced Density
- Natural Gamma
- Caliper
- High Resolution Density

3.3 (continued)

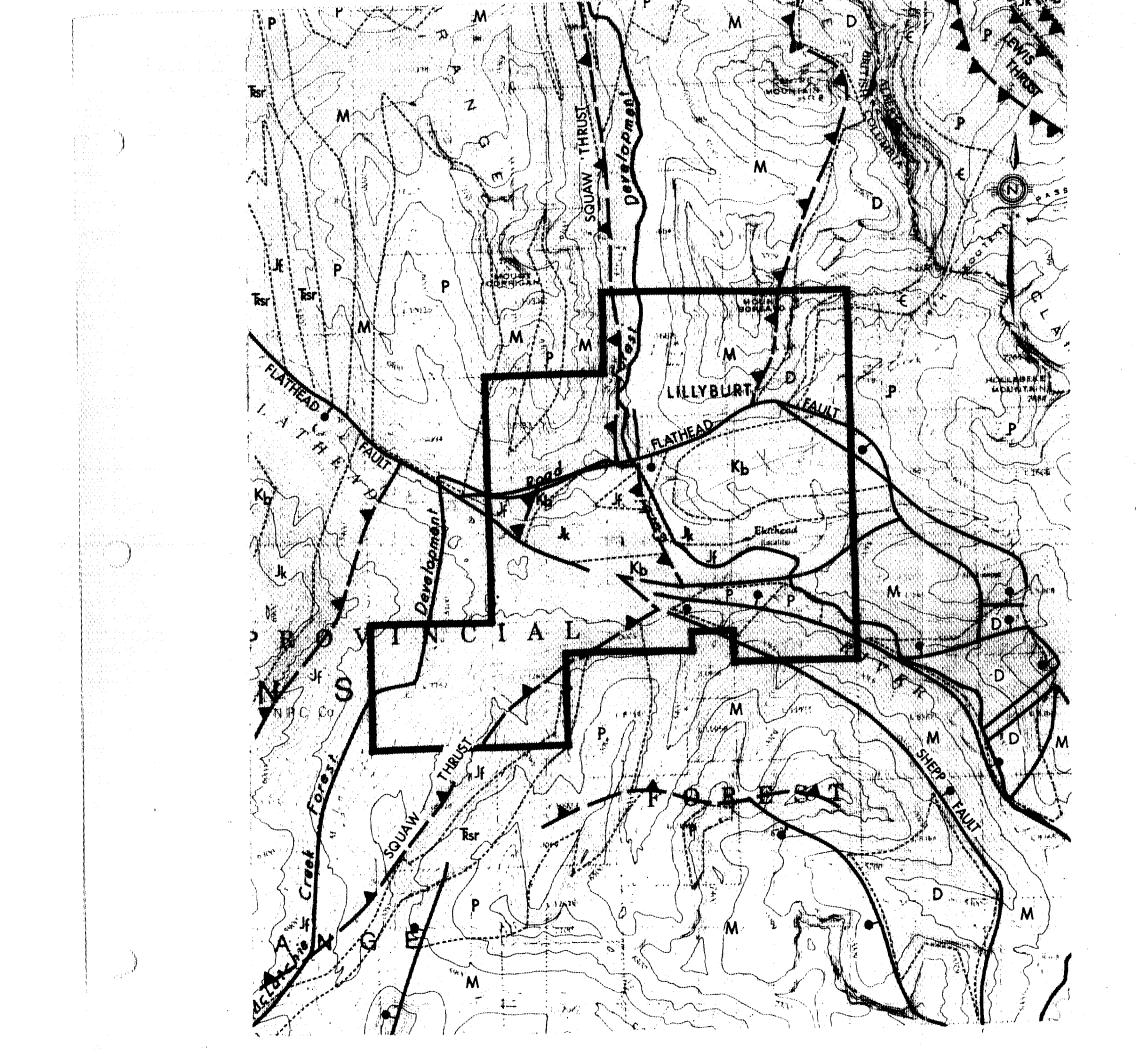
Drill holes were systematically logged through the rods using the neutron-neutron and natural gamma tools. The drill rods were then removed, and an attempt to log the open hole was made using the natural gamma, caliper and high resolution density tools. Open hole logging was not always successful due to caving problems in large seams, leading to varying unique geophysical log types for each hole.

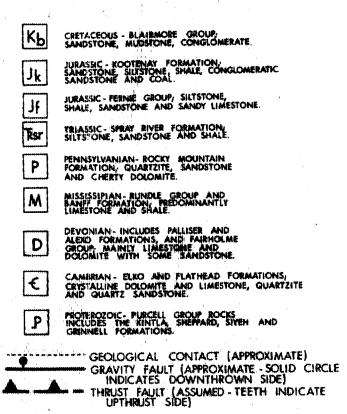
Assay results for the 1980 drilling program were not available at the time of compilation of this report but 1979 drill results are submitted herein (Appendix VI).

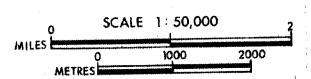
In addition to drilling, three backhoe trenches were dug for a total length of 275 meters. Equipment used included a Caterpillar 225 and a John-Deere Extendable. Sites of recent machinery work were surveyed conventionally and reclaimed after completion of work. Road upgrading and construction was accomplished with the use of a Caterpillar D8-K bulldozer.

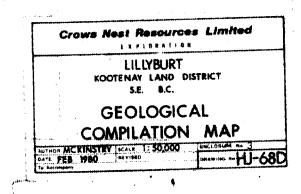
All surveying was contracted to Sheltech Canada. Conventional survey methods using a 1-inch theodolite and electronic distance measuring equipment were used to obtain coordinates and elevations for drill holes, trenches and control survey points (Appendix XI). Drill sites located off existing logging roads and a new access road were fertilized and seeded. Due to previous logging operations, access to most drill sites involved minimal surface disturbance.

3.4 Costs of Work Done, 1980


Total expenditure as of December 31, 1980, for the 1980 field season was \$318,891. A detailed summary of expenditures can be found in Appendix I.


4.1 Regional Geology


The Lillyburt Coal Prospect is located in the Flathead Valley graben structure as outlined by Price (1965). The property is bounded by the south-dipping Flathead normal fault to the north and east and a north-dipping normal fault located in the Flathead River to the south. Westward, coal-bearing strata are confined by the Squaw Thrust. Strata to the north and south of the property consists of Cambrian to Pennsylvanian carbonates. Shales of the Jurassic Fernie Formation are dominant west of the Squaw Thrust. Precambrian Purcell sandstones, argillites and limestones outcrop to the east of the property. Thrusting and associated folding are dominant structural features within the strata surrounding the Lillyburt prospect but are of minimum importance within the property.


10.

.

4.2 Lillyburt Stratigraphy (Appendix VII)

Coal at Lillyburt occurs in the upper Jurassic to Lower Cretaceous Coal Bearing Member of the Kootenay Formation. Lack of complete stratigraphic sections exposed on the property and diamond drill core prevent the determination of the true stratigraphic position of all the coal seams with respect to the Basal (Moose Mountain Member) sandstone.

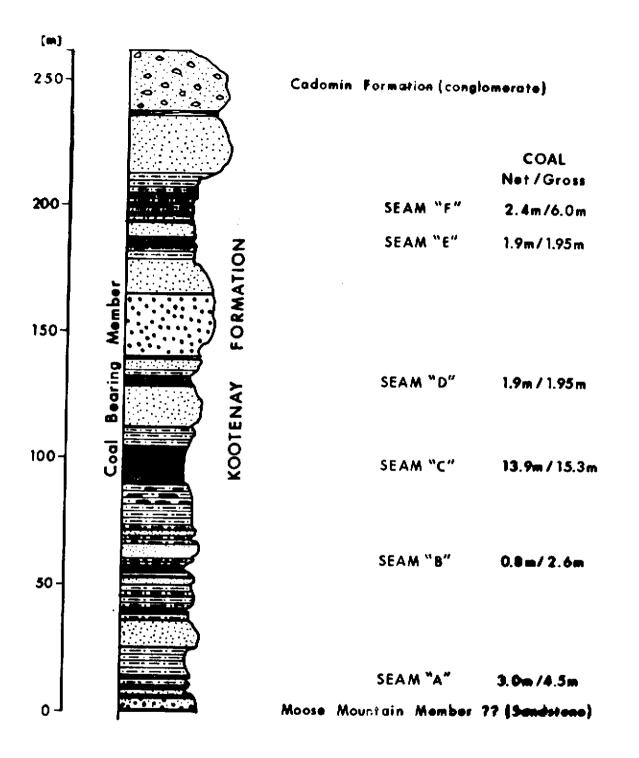
Shales of the Fernie Formation underlying Kootenay strata outcrop on the west end of the property on both sides of the Flathead River. The presence of the Basal sandstone could not be established with certainty, although sequences exposed near the Flathead River may belong to this unit.

Evidence from drill holes such as LB-1 and LBR-214 suggest a true total thickness of 260 meters for Kootenay strata along the south limb of the Lillyburt syncline. This figure may be reduced to 180 meters in the north part of the property close to the Flathead normal fault. A regular stratigraphic sequence can be seen at the north end of the property (Enclosure #4). This sequence extends from the Cadomin conglomerate of the Cretaceous Blairmore Group to the upper part of the Coal Bearing Member of the Kootenay Formation. Drilling has detailed five coal measures of economic interest ranging from 1 meter to 18 meters true thickness. Between these seams are siltstones, sandstones and shales typical of the Kootenay sequence (Appendices VIII and IX).

11.

4.3 Structural Geology

Lillyburt, located within the Flathead Valley graben structure, is characterized by small and large scale gravity faulting. The Flathead normal fault is the predominant structure in the area, separating Jurassic-Cretaceous Kootenay and Blairmore strata from surrounding Pre-Cambrian to Pennsylvanian carbonates to the north and east. Displacement on this fault has been estimated to be approximately 1200 meters near the Flathead townsite (Price, 1965). Associated with this major structure are several strike-slip wrench faults sub-parallel to the main fault system. Disruption within the Kootenay stratigraphy is in the order of tens of meters. The southern margin of the property is again defined by a large scale gravity fault which juxtaposes Jurassic Fernie shales against Pennsylvanian and Mississippian carbonates. Displacement and attitude of this structure are as yet unknown. The western boundary of the property is defined by the Squaw Thrust which has transposed Jurassic Fernie strata over Cretaceous Blairmore rocks. A subsidiary thrust may be present within Squaw Creek (see Appendix VII). Its existence is postulated on the basis of repetition of a Jurassic Fernie-Kootenay succession from west to east across the property. Within the major structural block, east of Squaw Creek and north of the Flathead River, the coal-bearing sedimentary rocks have been folded into a tight, asymmetric, east-plunging syncline.


.

This syncline is characterized by a moderate dipping (30°) south limb and steeply-dipping $(60-80^{\circ})$ north limb. The axial plane of this fold trends approximately east-west and dips northward 80° . Evidence suggests the fold axis of the syncline flattens out eastward and may in fact be gently warped. Intense brecciation and minor folding and fracturing are minor structures associated with the major normal faulting.

West of Squaw Creek, the Kootenay-Fernie strata appear to have been folded into a tight steeply plunging overturned anticline trending northeast-southwest. Outcrop exposure and limited drilling preclude any further assessment of this area at this time.

4.4 Coal Geology (Enclosure 4)

1980 rotary drilling has defined five seams of economic interest at Lillyburt. Geophysical log interpretation suggests Seam E, the highest seam in the sequence, is more of a coal zone than a seam. Numerous shale and siltstone partings up to two meters thick separate these coal partings from each other. The zone can be up to 15 meters thick but may only contain four meters of coal.

LILLYBUR	T
8.C.	
TYPICAL	
STRATIGRAPHIC	
Enclosure No. 4	SCALE 1: 1500

Seam D, 36 meters below Seam E in section, has a very consistent geophysical signature from drill hole to drill hole. It averages two meters thick, with a distinct half-meter shale parting in the middle.

Seam C is the thickest seam on the property, attaining an aggregate thickness of 35 meters in one locality. However, thickness tends to vary from 12 to 18 meters along strike westward on the south limb of the syncline. A very prominent 13-meter split is evident on the east end of the south limb but pinches out westward over an 800 meter strike length. Aside from this split, located in the middle of the seam, contamination of the seam is slight. Seam C is approximately 40 meters downsection from Seam D.

A further 40 meters downsection is Seam B. It is from four to seven meters thick with either a three-meter split in the middle or numerous thin shale partings disrupting the coal.

Forty to 65 meters downsection from Seam B is Seam A. This seam varies from 2-1/2 to 8-1/2 meters thick and can be quite shaley in places. This seam may rest on the Kootenay Basal sandstone but diamond drill coring is needed to substantiate this.

5.0 MINEABILITY AND COAL RESERVES

5.1 Reserves

Coal reserves are always difficult to ascertain with complete accuracy. However, two sets of calculations have been performed on the Lillyburt data in an attempt to obtain a better working knowledge of the economics of the property.

5.1a Calculation #1

Initially, the first set of calculations were carried out on the basis of mineability of the entire syncline. Certain assumptions and considerations are implicit in this approach. The following are some of the more pertinent points:

- (a) The synclinal structure is continuous from south limb to north limb.
- (b) The fold axis plunge flattens with depth from west to east.
- (c) The coal thickness does not vary dramatically with strike length.
- (d) Reserves are calculated from the nose of the fold whereit outcrops in the west to section line 4300 in the east.

- (e) Stratigraphy is continuous throughout the syncline.
- (f) Strike length of influence from one section to the next is scaled proportionally, based upon surface and drilling information.
- (g) All seams are mineable.

Discussion: Of the above points, the assumption that structure is continuous from south to north may not be entirely correct. The possibility of other, as yet undiscovered, east-west trending normal faults disrupting the synclinal structure must be taken into account. Further drilling in 1981 should hopefully resolve this question. There is strong geological evidence to suggest a flattening of the synclinal fold axis from west to east. In addition, stratigraphy appears to be correlative from section to section. However, coal thickness in some of the seams, particularly Seams E, C and A, show significant variability.

The accompanying chart (Enclosure 5) details the numbers used in the above calculation. Total <u>inferred</u> in-situ geological resources are determined to be 133,383 tonnes of coal with an overburdencoal ratio of 6.3 m³/tonne. The second set of calculations are of a more detailed nature, incorporating an open-pit design along the limbs of the syncline. Pit depth was predetermined to be approximately 150 meters. Pit design incorporated a high wall angle of 45° for the south limb structure and a high wall angle of 50° for the north limb. Width of the pit at the bottom was set at 80 meters. Assumptions and considerations for these calculations are the following:

- (a) Seam thicknesses are constant from section to section.
- (b) Small-scale normal faulting has been accounted for in the calculations.
- (c) All seams are mineable.
- (d) Strike length of influence from one section to the next is scaled proportionately based upon surface and drilling information.
- (e) Stratigraphy is continuous from section to section.
- (f) A small section at right angles to the trend of strata near section 2500 on the south limb of the syncline was constructed to facilitate computations around the nose of the fold. This section is omitted from this report.

A discussion of the above assumptions has been made in the previous set of calculations. Enclosures 6 and 7 detail the numbers used in Calculation #2. The more detailed nature of these computations suggest total geological in-situ <u>indicated</u> reserves for Lillyburt are 24.8 x 10^6 tonnes of coal at an overburden-coal ratio of 3.8 m³/tonne, under the constraints of this pit design.

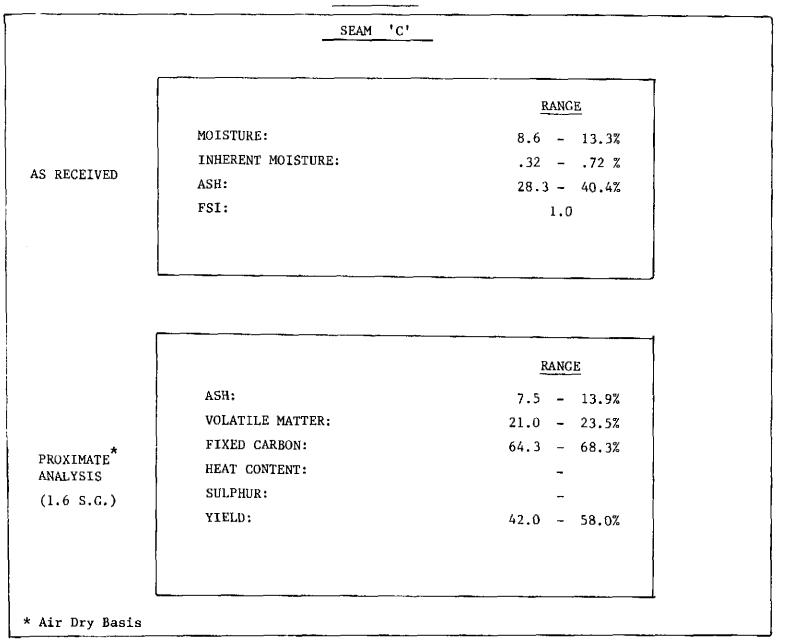
5.2 Mineability

Due to the valley setting and moderate elevations of Lillyburt, there are no topographic limitations to the mining potential of the property. Consideration, however, must be given to the proximity of Squaw Creek and the Flathead River. These watercourses raise potential flood problems to any pit design. In addition, mining activity must be of such a nature as to have minimal impact on the ecology of the river systems.

It should be stressed here that due to the folded nature of the strata, coal seams dip <u>away</u> from both the Flathead River and Squaw Creek. Mining activity then would tend to move <u>away</u> from both river systems. With careful mine design incorporating hydrological studies, mining of Lillyburt coal with minimal environmental disturbance could be achieved.

5.2 (continued)

In summary, then, reserves and location make Lillyburt an attractive coal property. However, mine design must interact with and compensate for the existing fluvial system adjacent to the property.


Ì

į

Enclosed with this report are trench and drill hole coal analyses obtained during the 1979 exploration field season (Appendix VI).

Preliminary results suggest that Lillyburt is a medium volatile bituminous coal property. Table I presents proximate analytical information on Seam C. Table II is a listing of more detailed tests carried out on a composite sample comprising Seams B, C and D.

TABLE	Ι
-------	---

21.

and the second second

•-----

TABLE J-

SEAMS	В.	С	AND	D	(COMPOSITE)
	~,	<u> </u>	11111	~	(courrostic)

ULTIMATE ANALYSIS*		}	ASH FUSABILI	ΓY*
Carbon Hydrogen Sulphur Nitrogen Ash Oxygen (by difference) * Dry Basis	76.01 4.02 0.32 0.96 13.32 5.37	Grindability Index = 86 Mean Reflectance = 1.2	Initial Softening Hemispherical Fluid	2370 2700 2700+ +

* Reducing

INACE	ANALYSIS (ppm)	ASH ANAL	YSIS (%)
Cd	0.80	s ₁ 0 ₂	55.3
РЬ	10.50	AC203	25.6
Ni	14.50	Fe ₂ 0 ₃	4.4
Нg	0.09	T102	1.3
Ве	1.20	P205	0.4
Cr	12.50	Ca0	4.0
As		MgO	1.4
	0.80	so ₃	2.
SЪ	0.78	Na ₂ 0	0.
Se	0.87	к ₂ 0	0.9
		SrO	0.0
		BaO	0.1
		Mn ₃ 0 ₄	-
		LOF	0.3

22.

•

7.0 RECOMMENDATIONS FOR FURTHER WORK

Further exploration work is required on the Lillyburt project and in brief should include the following:

- (a) Further drilling to define:
 - i) Reserves.
 - ii) Coal Quality.
 - iii) Structure.
 - iv) Stratigraphy.
 - v) Overburden Depth and Ratio.
- (b) Geological Mapping (Scale 1:2000):
 - i) Detailed mapping of all outcrops on the property.
 - ii) Correlation of coal seam outcrops.
 - iii) Structural analysis of the geology.
- (c) Geotechnical:

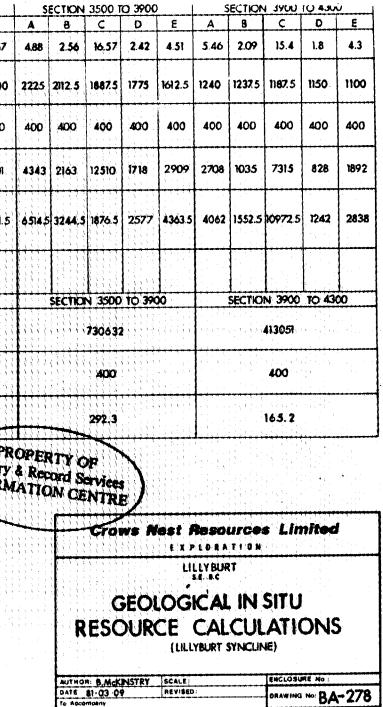
I,

- i) Study of hydrology; installation of piezometers.
- ii) Geotechnical core logging.

(d) Trenching:

- i) Describe new coal seam exposures.
- ii) Aid geological correlations.

D'ORSAY, M., 1979 Geological Report on the Lillyburt Project, Coal Licence No's: 4080-4089 Inclusive, Kootenay District, Map Reference 82G7.

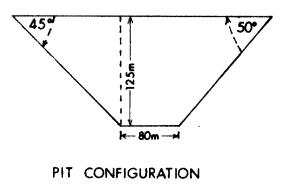

PRICE, R.A., 1965 Flathead Map Area, British Columbia and Alberta, Geological Survey Canada Memoir 336

ROBERTSON, W.F., 1909 Report of the Ministry of Mines, British Columbia, p 175.

E			CTION	2		3300	3100 TC	CTION	SE		3100	2500 TO	TION	SEC	1	2500	O/C TO	CTION	SE	
	D	C	8	A	E	D	C	8	A	E	D	C	8	A	E	D	¢	B	A	SEAM
5.67	3.12	17.7	3.12	4.32	6.95	3.32	18.92	3.13	4.45	6.17	2.86	21.81	274	5.06		1.5	24.6	2.2	6.70	COAL
500	700	1850	2100	2087.5	1325	1475	1700	1950	1937.5	775	950	N.50	1375	1500		250	325	425	500	STRIKE LENGTH OF INFLUENCE
200	200	200	200	200	200	200	200	200	200	560	560	560	560	560		50	120	200	330	DIP SLOPE LEINGTH (m)
701	1061	6549	1310	1804	1842	979	6433	1221	1724	2678	1522	14046	2110	4250		19	959	187	1106	VOLUME OF COAL (*10 ³ m ³)
i51.5	591.5 2	823.5	1965	2706	2763	1486.5	9649.5	1831.5	2586	TON	2283	21069	3165	6375.5		28.5	1438.5	280.5	1659	MASS OF COAL (×10 ³ TONINES)
	0 3500						WA													
						10 330	A DIGO	360 1101			10 310	N 2500	SEC IIO		<u>u</u>	10 230	N O/C	SECTION		
1111 1111	<u> </u>	B799D					89207					49044	3				1938	4.1		AREA (m ²)
		200					200					5¢0					330			STRIKE LENGTH BETWEEN SECTIONS
		137.5					117.8				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	195.5					23.7			VOLUME (*10 ⁴ /m ³)
	0 3500 Lib	3300 87990 200	ecnio			10 330	N 3100 892 07 200	\;;;;;; ;			10 310	560		K 133		10 230	1938 330			(m ²) STRIKE LENGTH BETWEEN SECTIONS (m) VOLUME (*10 ⁴ m ²)

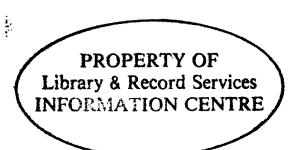
TOTAL WASTE & COAL = 932 * 10⁶ m³ (LESS) COAL = 86.9 × 10⁶ m³ TOTAL WASTE = 843.1 × 10⁶ m³ RATIO OVERBURDEN

RATIO OVERSURDEN TO COAL IS 843.1×10" / 88.9 ×10" = 9.5 1 m³/m³ OR 843.1×10" / 133.38 × 10" = 6.32 1 m³/ TONNE

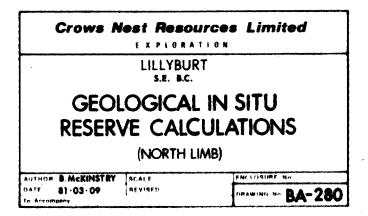

		ŚĘ	CTION	O/C TO	2500		SE	CTION	2500 TC	3100		S S	ECTION	1 3100 T	0 3300	,	1	SECTION	N 3300	TO 3500)	\$	ECTION	4 3500 T	00986 (01		s	SECTION	1 3900	() 4JU
	SEAM	A	B	C	D	E	A	B	C	D	E	A	B	C	D	E	A	B	C	D	E	A	8	C	D	E	A	B	с	D
	COAL AVERAGE THICKNESS	6.70	2.2	24.6	1.5		5.06	274	21.81	2.86	6.17	4.45	3.13	18.92	3.32	6.95	4.32	3.12	127	3.12	5.67	4.88	2.56	16.57	2.42	4.51	5.46	2.09	15.4	1.8
	STRIKE LENGTH OF INFLUENCE (m)	500	425	325	250		1500	1375	n50	950	775	1937.5	1950	1700	1475	1325	2087.	2100	1850	1700	1500	2225	2012.5	1887.5	1775	1612.5	1240	1237.5	n 87.5	1150.
	DIP SLOPE LENGTH (m)	330	200	120	50		560	560	560	560	560	200	200	200	200	200	200	200	200	200	200	400	400	400	400	400	400	400	400	400
	VOLUME OF COAL (×10 ³ m ³)	1106	187	959	19		4250	2110	14046	1522	2678	1724	1221	6433	979	1842	1804	1310	6549	1061	1701	4343	2163	12510	1718	2909	2708	1035	7315	828
	MASS OF		<u> </u>	-		+	1					 		1	+		1			}			<u> </u>					1	<u>}</u>	
	COAL (×10 ³ TONNES)	16.59	280.5	1438.5	28.5		6375.5	3165	21069	2283	4017	2586	1831.5	9649.5	1486.5	2763	2706	1965	9823.5	1591.5	2551.5	6514.5	3244.5	5 1876.5	2577	4363.5	4062	1552.5	10972.5	5 1242
														WA	STE		8	c o /	4 L								1 1 1 2			
an an tha an An tha an tha	an a		L SECTIO	N OK	TO 250))0		SECTIO	N 2500	TO 310)()	1	SECTIO	N 3000	TO 330	0		SECTIO	N 3300	TO 350	Q		SECTIO	N 3500	10 390	10		SECTIO	N 3900) TO 43
a service of the serv An and the service of the ser	AREA (art)			1938		ر کې ورکې وړکې کې کورې ر کې کې کې کې		3	49044					5892.07		د. ور ^{الر} ديد			687390					730632					413051	· · ·
	STRIKE LENGTH BETWEEN SECTIONS (m)			330					560					200					200					400		۲۰۰۵ ۲۰۰۵ ۱۹۰۰ - ۲۰۰۹ ۱۹۰۰ - ۲۰۰۹ ۱۹۰۰ - ۲۰۰۹ ۱۹۰۰ - ۲۰۰۹ ۱۹۰۰ - ۲۰۰۹	· · · · · · · · · · · · · · · · · · ·		400	
	VOLUME (*)0 ⁴ m ³)			23.7					195.5					117.8		۔ دی ¹ در د			137.5 E				1100 C	292.3					165.2	
		TOTAL				" 3 ()			mnes												PR brary ORM	OPER A Rec LATIO	TY C ord S N CE	AF ervices INTRE					•	•
		TOTAL	(1	ESS) CO	DAL = DAL = ASTE =	88.9	× 10°	3					4 V - V 						in the second seco					danser of	A101	est A	•	U. C.	e Lir	nited
	and a second sec		10	<18% ₩	-JIC -	U43.1	~ 10	194		RATK	O OVE	BURDE	N TO C	COAL	8431	×10 /	88.9 ×	00 = 9	5) m/	3 M							LYBUR			
	en e										s.*							10° = 6.	32 :1 m ³	TONN	₩E ···					1 1 1				
· · · · · · · · · · ·						•							•		•											OGK				
									5 · ·												•		R	ESC	OUR					ONS
						÷																	AUTHO	R B.McKI	NSTRY	SCALE: REVISED:			ENCLOS	
					1																		To Acco	61-03-09 mpany		LUE VISED:			DRAWING	No: BA

								cc	DAL											
	S	ECTION	2900	TO 310	0	5	SECTIO	N 3100 1	ro 3300			SECTIO	N 3300	TO 350	0		SECTIO	N 3500	TO 390	0
SEAM	A	В	С	D	Ε	A	В	C	D	E	A	В	С	D	E	Α	В	С	D	E
COAL AVERAGE THICKNESS (m)	5.6	2.6	18.0	2.6	4.0	3.0	1.0	18.0	2.6	4.0	-	1.0	18.0	2.6	4.0		1.0	18.0	2.6	4.0
STRIKE LENGTH OF INFLUENCE (m)	170	135	105	165	160	152	355	300	337	337		220	220	210	200		390	390	390	390
DIP SLOPE LENGTH (m)	40	135	157	133	118	30	130	185	175	150		128	200	166	115	_	190	202	174	130
VOLUME OF COAL (m ³)	772158	47385	296730	57057	75520	13680	46150	999000	153335	202200		28160	792000	90636	92000	-	74100	1418040	176436	202800
MASS OF COAL (× 10 TONNES)	1158.2	71.08	445.1	85.58	113.3	20.5	69.22	1498.5	230	303.3	-	42.24	1188	135.9	138	-	111.15	2127	264.65	304.2

COAL & WASTE


	SECTION 2900 TO 3100	SECTION 3100 TO 3300	SECTION 3300 TO 3500	SECTION 3500 TO 3900
AREA (m ²)	28194.7	29930.4	26749.4	26048
STRIKE LENGTH BETWEEN SECTIONS (m)	150	244	225	412
VOLUME (× 10 ⁶ m ³)	4,229,200	7,303,010	6,018,610	10,731,776

LILLYBURT RESERVES (GEOLOGICAL IN SITU) Total Coal : 25.85 × 10⁶ TONNES Total Waste : 95.15 × 10⁶ m³ Ratio is $\frac{95.15 \times 10^6}{25.85 \times 10^6} = 3.7 : 1 \text{ m}^3/\text{TONNES}$



TOTAL COAL = 5518000 m³ OR 8277000 TONNES TOTAL WASTE & COAL = 28282596 m³ (LESS) COAL = 5518000 m^3 TOTAL WASTE = 22764596 m³

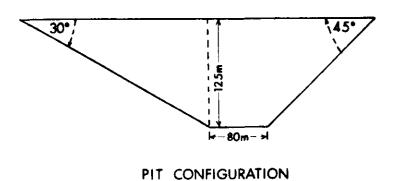
RATIO OVERBURDEN TO COAL IS $\frac{22764596}{5518000} = 4.1:1 \text{ m}^3/\text{m}^3$

OR <u>22764596</u> = 2.75:1 m³/TONNE

COAL

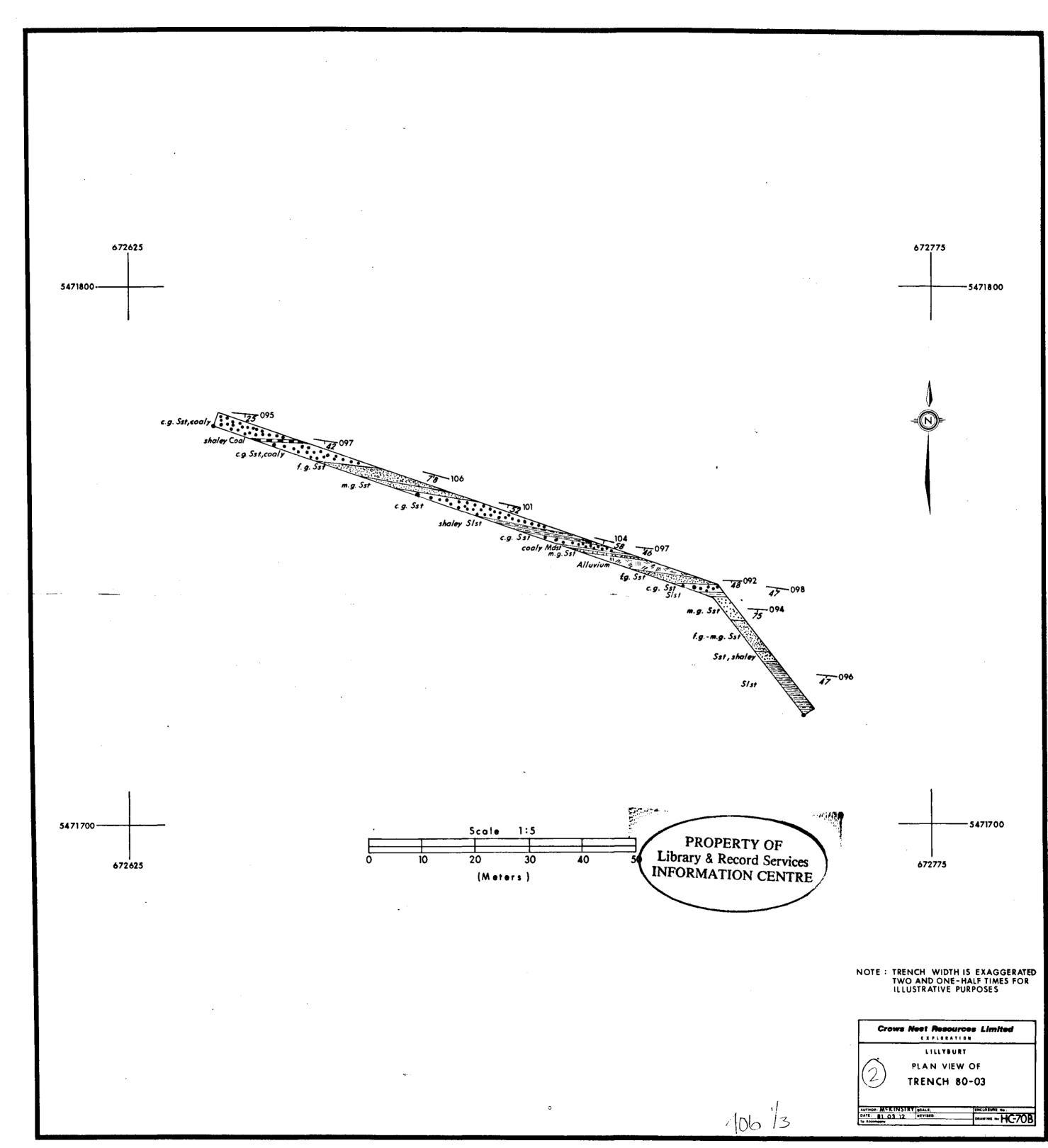
	c		FAULT		· · · ·		ECTION	N 700 T	0 1100				N 1100 1	0 2500		5	ECTION	2500	TO 3100)		SECTION	N 3100 1	O 3300)	5	SECTION	3300 1	O 3500	0		SECTION	N 35001	TO 3900)	S	ECTION	3900	ro 4300	1
SEAM		B		D	E	A	B	C		E	A	B	C	D	E	A	B	C	D	E	Α	B	C	D	E	Α	B	С	D	E	A	* B	C	D	E	• A	<u>B</u> '	• c	0	_ <u>E</u>
COAL AVERAGE THICKNESS		2.0	13.0	2.6	2.0	4.5	2.0	15.5	2.6	2.0	9.0	2.6	24.0	2.6	4.0	5.6	2.6	18.0	2.6	4.0	5.6	2.6	18.0	2.6	4.0	5.6	2.6	18.3	2.6 1.6	3.5 4.3	3.2 4.3 2.6	1.73 2.6	12.6 18.3	1.6	3.5	4.3 4.75	1.73	12.6	1.6	4.85
STRIKE LENGTH OF INFLUENCE (m)		300	300	290	200	200	420	420	410	416	600	515	432	356	285	521	466	428	385	350	210	205	205	200	200	200	200	200	200 60	115 205	190 150 100	200 173	200 200	400	400	75 277	400	160 240	400	400
DIP SLOPE LENGTH (m)		140	110	65	20	270	140	110	65	20	268	175	110	65	30	246	200	145	100	70	270	240	190	150	110	330	295	208	168 118	80 113	190 110 173	118 105	118 118	80	40.5	73 74	75	118 70	80	40.5
VOLUME OF COAL (m ³)		84000	429000	49010	11200	243000	0117600	716100	69290	16640	1447200	234325	1140480	60164	34200	717730	242320	1117080	100100	98000	317520	127920	701100	78000	88000	369600	153400	761280	99688	131809	221990	0146999	729240	51200	56700	120908	51900	449568	51200	78570
MASS OF COAL (× 10 ³ TONNES)		126	643.5	73.5	16.8	364.5	176.4	1074.1	103.9	24.96	217.1	351.48	171.07	9 0.25	51.3	1076.6	363.5	1675.5	150.15	147	476.3	191.88	1051.6	117	132	554.4	230.1	1141.9	149.5	197.7	332.98	3 220.5	1093.9	76.8	85.0 5	181.35	77.85	674.3	76.8	117.86
* Double	& triple	igures	due to f	oulting i	influence	, requiri	ng piece	meal cal	culations						(: 0 A I	. &	W A S	ΤE																					

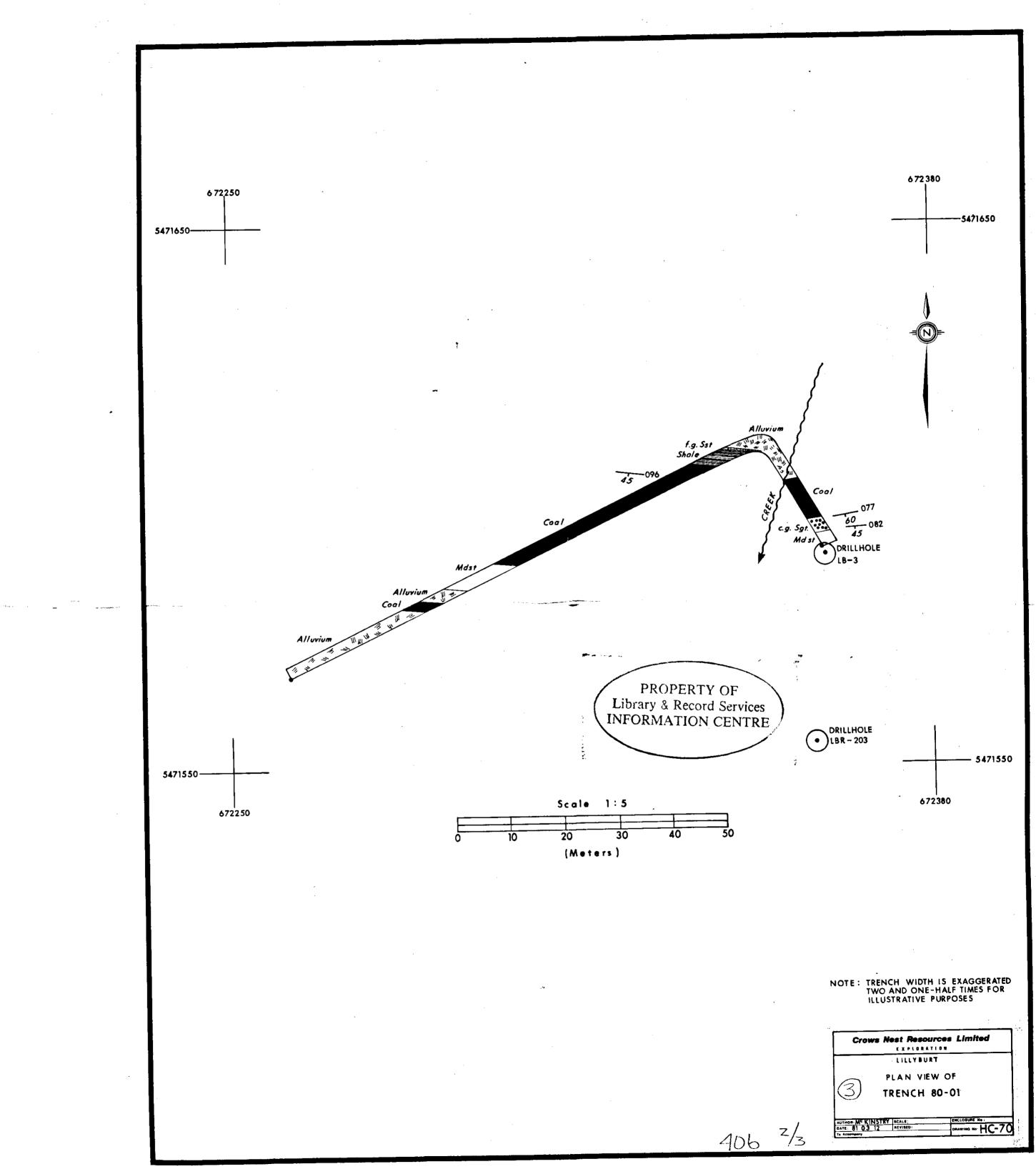
- ۲	SECTION FAULT TO 700	SECTION 700 TO 1100	SECTION 1100 TO 2500	SECTION 2500 TO 3100	SECTION 3100 TO 3300	SECTION 3300 TO 3500	SECTION 3500 TO 3900	SECTION 3900 TO 4300
			* 9600	• 11600				0.5000
AREA	13142.5	21295	9987.5	13282.5	52312.5	47205	35392.5	25389
(m ³)			10750	13750		· · · · · · · · · · · · · · · · · · ·		
RIKE LENGTH			403	400				· · · · ·
WEEN SECTIONS	290	400	295	350	200	200	400	400
(m)			470	465				
VOLUME (×10 ⁶ m ³)	3,811,325	8,518,000	11,867,612	15,682,675	10,462,500	9,441,000	14,157,000	10,155, 6 00


•

-

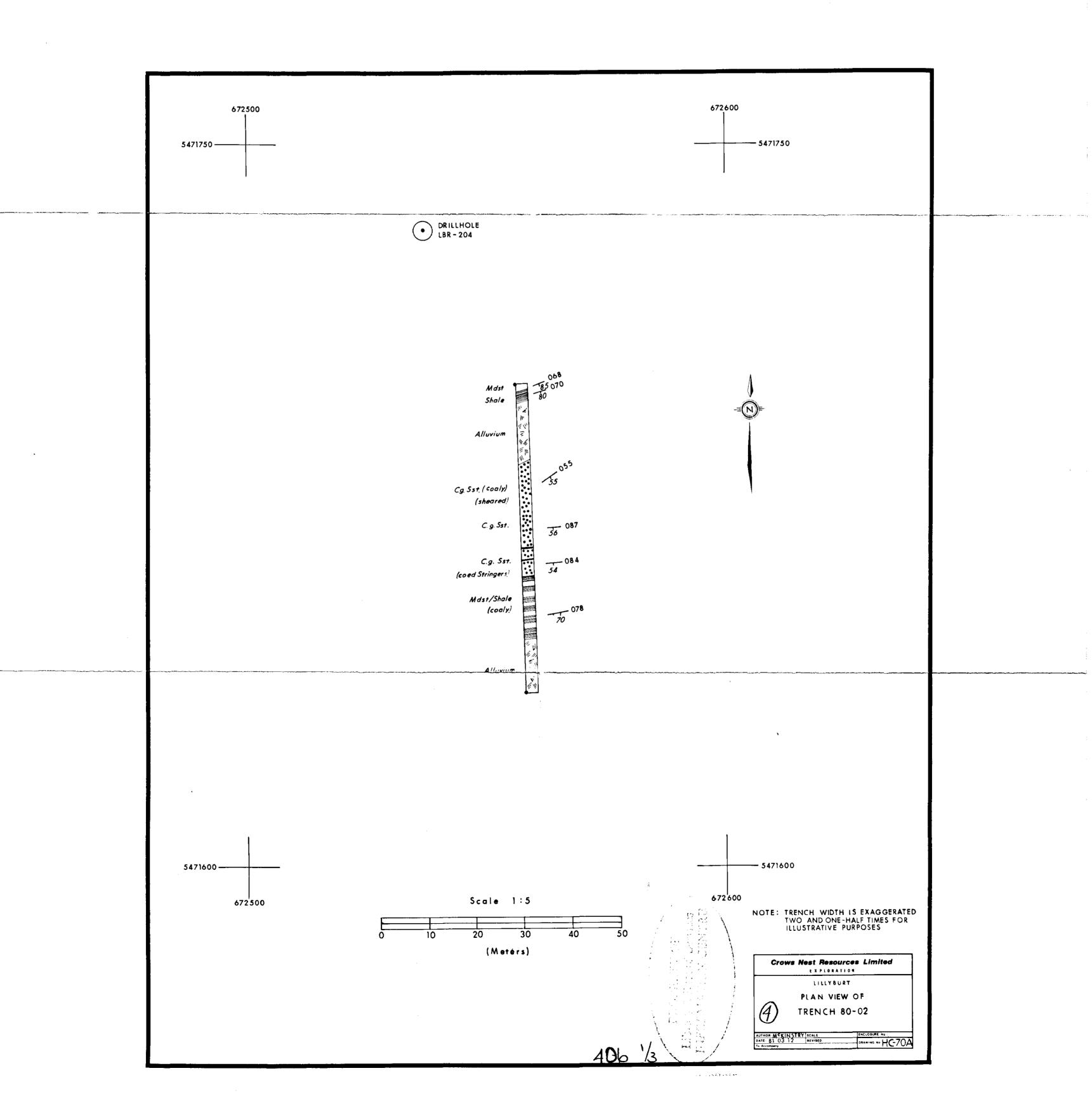
* Multiple figures due to folding influence, requiring piecemeal calculations

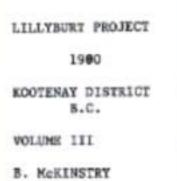

TOTAL COAL = 11714029 m³ OR 17571044 TONNES


TOTAL WASTE & COAL = $84.095 \times 10^6 \text{ m}^3$ (LESS) COAL = 11.714 × 10⁶ m³ TOTAL WASTE = 72.381 × 10⁶ m³

5 PROPERTY OF Library & Record Services INFORMATION CENTRE RATIO OVERBURDEN TO COAL IS $\frac{72.381 \times 10^6}{11.714 \times 10^6} = 6.2 : 1 \text{ m}^3/\text{m}^3$ OR $\frac{72.381 \times 10^6}{17.571 \times 10^6} = 4.1 : 1 \text{ m}^3/\text{TONNE}$ 406 1/3 **Crows Nest Resources Limited** EXPLORATION LILLY BURT t GEOLOGICAL IN SITU **RESERVE CALCULATIONS** (SOUTH LIMB) ENCLOSURE No : AUTHOR: B.McKINSTRY SCALE; DATE: 81-03-09 REVISED: DRAWING No: BA-279 To Accompany

ENCLOSURE 8





.

•

;

82 G/7

APPENDIX VI

406 3 of 3

MAY 2 5 1981 C.N.R.L. RECORD CENTRE

AREA: LILYBURT

HOLE NO. TRENCH DATE: August 2, 1979

ANALYST Bornie Hudyma-

LAB. . NO.	SAMPLE NO.	SEAM	INTERVAL (METRES)	FRACTION	% AIR DRY LOSS	% MOISTURE	% ASH	% V.M.	% F.C.	F.S.I.	SULFUR	% YIELD	BTU/ LB	CALC BASI
79-80	Ml			RAW	13.71	3.99	66.77							ADB
	Plasti	>						·					a a a a a a a a a a a a a a a a a a a	ARB
						17.15	69 54	1		<u> </u>				DB
				FLOAT						· · ·	<u> </u>			ADB
							1					and the second secon		DB
				FLOAT -								1 40 C		ADB
														DB
				FLOAT									·····	ADB
														DB
				RAW	18.52	1	41.69	24.06	26 91					ADB
'9~8 1	M2				and the second se									ARB
						24.58	45.04	25,99	28 07					DB
				FLOAT										ADB
												E S		DB
				FLOAT										ADB
														DB
				FLOAT							<u> </u>			ADB
					. Alexandra							1. 8		08
9-82	мз			RAW	16.34	2.75	84.36						· -	A D B
					16.34	18.64							-	ARB
							86.75							DB
				FLOAT								<u> </u>		ADS
														DB
				FLOAT										ADB
														DB
				FLOAT	dent come					;	(┈┈╩╉╅		ADB
	$\mathbf{X} = \mathbf{Z}$									j				DB
			Į	<u> </u>	_	· · · · · · · · · · · · · · · · · · ·				<u> </u>				

AREA: ______

j.

HOLE NO. TRENCH DATE: August 2, 1979

ANALYST BERNIE HUDYMA

LAB. NO.	SAMPLE NO.	SEAM	INTERVAL (METRES)	FRACTION	X AIR DRY LOSS	% MOISTURE	% Ash	% V.M.	% F.C.	F.S.I.	SULFUR	% YIELD	BTU/	CALC BASI
79-83	M4			RAW	16.50	3.91	67.98							ADB
			· ·			19.77								ARB
						19 <u>77</u>	70.75		-			2.25		DB
				FLOAT	1. Basile ()	M				•				ADB
							i	· · · ·				1997 - 1974 1997 - 1974 1997 - 1997 - 1974		DB
				FLOAT	and descention	2								ADB
												17 A.		D8
				FLOAT										ADB
					5 (A A A A A A A A A A A A A A A A A A									DB
79-109	M6			RAW	8.25	6.07	34.45	23.00	36.48					ADB
					17 - T T T	13.82								ARB
						13.82	36.68	24.49	38.83					DC
	· ·			FLOAT								0.125.2		ADB
			{											DB
				FLOAT		A CONTRACTOR CONTRACTOR								ADB
						1.1.1.1.1.1.1						and the second		DB
	l			FLOAT			ł					रावी <i>च्यान क</i> र्म		ADB
														DB
79-110	M7			RAW FLOAT	5 81	6.73	37.87	23-07						AD3
	-					12,15		! 		ļ				ARB
							40.60	24.74	34.66					DB
				FLOAT		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			· · · · · · · · · · · · · · · · · · ·					ECA
I			1								 			DB
				FLUAT	- 1 999 (2013)	a States Beneficiana States Beneficiana								ADB
						1					: 		<u> </u>	
		ł		FLOAT		<u> </u>								ACB
	Χ.					i i							{	DB
ł	1	1	ł	l		· I	i l	l 🛔		i 1	l	1	1	1

AREA: I.TT.YBURT

Į.

HOLE NO. TRENCH DATE: August 2, 1979

ANALYST Bernie Hudyma

LAB. NO.	SAMPLE NO.	SEAM	INTERVAL (METRES)	FRACTION	X AIR DRY LOSS	* MOISTURE	% ASH	% V.M.	% _ F.C.	F.S.I.	% SULFUR YIELD	BTU/ LB	CALC BASI:
79-111	M8			RAW	4.79	_7_37	34.92	22,18	34.53				AD3
		· .				11.81							ARB
						11.81	38.78	23,95	37.27				DB
				FLOAT									ADB
													DB
				FLOAT									ADB
													DG
				FLOAT	1								ADB
													DB
79-122	Tl	OUTC	ROP	RAW		0 20	04 40	28.97	38.35		77.00		ADB
					8-2-5-5	0.20						·	ARB
1							26.67	31.56	41.77				DD
				FLOAT	n i	1					1 1		ADB
										ļ			DB
				FLOAT		1					2000		ADB
						and the second second							DB
				FLOAT		Aller and a state of the						·	ADB
					And the second second								DB
79-123	м9	OUTC	ROP	RAW		7.44	23 92	27.18	41.46				ADB
										<u> </u>	k		AP.B
				FLOAT			25 84	_29_37	44.79		_		DB ADB
				I LUAI					·				
				FLOAT									DB
				FLOAT							<u></u>		C3 ADB
	L.				And the sale for	· · · · · · · · · · · · · · · · · · ·			- <u></u>				DB
]							•			4	

CRUMS REST RESOURCES ALTSIS REPORT

AREA: LILYBURT

I.

HOLE NO. TRENCH DATE: August 2, 1979

ANALYST Bernie Hudyma

LAB. . NO.	SAMPLE NO.	SEAM	INTERVAL (METRES)	FRACTION	AIR DRY LOSS	% MOISTURE	% ASH	% V.M.	% F.C.	F.S.I.	SULFUR	% YIELD	BTU/ LB	CAL BAS
79-124	Hl	ROADCU	T-OUTCROP	RAW		9.49	23.32	30.58	36.61				· · · · · · · · · · · · · · · · · · ·	ACI
			-								····		<u>a ann ainte ann airt</u>	ARI
							25.77	33.78	40.45				· · · · ·	DB
				FLOAT										ADi
			1											D5
				FLOAT		, , ,								ADI
														DB
				FLOAT										AD:
														03
79-125	Fl			RAW		1.88		19.84	49.36					EGA
					and the second									ARI
		}					29.47	20.22	50.31					DB
		}		FLOAT	19	4							· · ·	CA
														DB
				FLOAT					-					AD
						م معالی می انجام ا م از از از ماه می انجام م از از از ماه می انداز ا						ر ارور بار از ا		63
				FLOAT										A D
		ļ											_,	DB
79-12	6 T2			RAW		4.58	42 69	22.56	30.17					GA
12 12			}			1 10 10 10 10 10 10 10 10 10 10 10 10 10								AP.
							44.74	23.64	31.62			مى تىلىت بەلۇرى		03
				FLOAT		The subscript of the second								DA
														DS
		}		FLOAT		TATE VILLA								<u>AD</u>
														DB
				FLOAT	and the second							ا ا		DA
		l ·											1	DB

AREA: Lilyburt (Trench Samples) HOLE NO. ____ DATE: June 28, 1979 ANALYST Bernie Hudyma

۱.

. .

LAB. NO.	SAMPLE NO.	SEAM	INTERVAL (METRES)	FRACTION	AIR DRY LOSS	% MOISTURE	% ASH	% V.M.	% F.C.	F.S.I.	SULFUR	% YIELD	BTU/ LB	CALC BASI
	1			RAW .	26.46	4.97	50.48	22.07	22.37	0				ADB
						30.12	37.12	16.23	16.53				المن المستحدة الأس	ARB
9-45			46			30.12	53.12	23.22	23,66			· -ζ ·		DB
			Trench	FLOAT						· ·				ADB
	ļ		Map Card				2					1		DB
			A-4	FLOAT			1						••	ADB
						11005414	\$			1				DS
				FLOAT								<u></u>		ADB
							1		· · · · · · · · · · · · · · · · · · ·					DB
				RAW	.44	1.21	23.40	17.59	57.80	1				ADB
					1. ************************************	1.65								ARB
9-46			65			an a	23.69	17.81	58,50					DB
1.40		ĺ	00	FLOAT								AT		ADB
			Coal Spoi					[·		······	DB
				FLOAT									j	ADB
						a franciska star Sanat Sanata a Sanata							. <u></u>	DB
		}		FLOAT								979-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		ADB
												9		DB
				RAW		(ADS
														ARB
			•											DB
				FLOAT		•						<u></u>		ADB
						2000 1973 1974 1975 1975 1975 1975 1975 1975 1975 1975								DB
				FLOAT								<u> </u>		ADB
														DB
		ł		FLOAT		<u> </u>				:		<u>معدم محمد محمد محمد معمد معمد معمد معمد </u>		ADB
	× 4								******				<u>}</u>	DB
													Ĺ	

CROWS NEST RESOURCES ALYSIS REPORT

AREA: LILLY BURT

HOLE NO. LB-3 DATE: March 25/80

ANALYST Bernie Hudyma

LAB. NO.	SAMPLE NO.	SEAM	INTERVAL (METRES)	FRACTION	AIR DRY LOSS	% MOISTURE	% ASH	% V.M.	% E.C	F.S.I	SULFUR	% VIELD	BTU/	CALC.
-707			4-52	RAW	7.97	.72	28.29			1	JULFUR		LB	BASIS ADB
			Drill			• • • • • • • • • • • • • • • • • • •				-				ARB
			Cuttings				28.49			·				DB
				1.6 FLOAT		.79		22.83	67.11	1		42		ADB
	-				Contraction of the second s			23.01	67.65					DB
		C.		FLOAT					07.00				·	ADB
	[r t		DB
				FLOAT										ADB
														DB
~708			52-61	RAW	7.50	.74	65.09		Colorisation and the	0				ADB
			Drill Cuttings											ARB
			cuccings				65.57							DB
				1.6 FLOAT				21.84	62.06	2		8		ADB
		с				<u>.59</u>]	21.97	62.43		(DB
-		ļ		FLOAT							P			ADB
						To Play of The Williams								DB
				FLOAT							1	<u>mesticit</u>		<u> </u>
		<u> </u>				And the second						C. C. R. J.		ADB DB
-10	Compos:	te of	4-61	RAW		1.08	30.55			1				ADB
	79-707-	708			C C C C L									ARB
							30.88							DB
		1		1.6 ^{FLOAT}	8	1.94	Contraction of the local division of the loc	22.24	66.54	1		39		ADB
								22.68	67.86	••••		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		DB
		С		FLOAT						i				ADB
											5			DB
	4 1			FLOAT	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					1		<u></u>		ADB
	***					· /						(DB

 \sim

AREA: Lilly Burt

HOLE NO.LB-2 DATE: March 25/80

ANALYST <u>Bernie Hudyma</u>

LAB. NO.	SAMPLE NO.	SEAM	INTERVAL (METRES)	FRACTION	AIR DRY LOSS	% MOISTURE	% ASH	% V.M.	% F.C.	F.S.I.	SULFUR	% YIFID	BTU/ LB	CALC BASI
-702			140-143	RAW	.73	. 57	59.16		1	1				ADB
•			Drill Cuttings								· · · · · · · · · · · · · · · · · · ·			ARB
			Cuttings		\$15+151 S		59.50		1	1				DB
				1.6 FLOAT		.58	17.46	23.03	58.93	51/2		32		ACS
		D					17 56	23.16	59.28					DB
				FLOAT										ADB
														DS
				FLOAT							-			ADB
														03
-703			176-178	RAW	9.52	61	33.46			1		NY 27 19 19		ADB
			Drill									**************************************		ARB
			Cuttings				33.66							03
			1	1.6 FLOAT		.67	7,50	23.51	68.32	3				AD3
		С				<u>. 67</u>		23.67	68.78			58		DB
				FLOAT										ADB
														08
			1	FLOAT										ADB
704		 											·	DB
-704			178-193 Drill	RAW			40.29			1			- 3 -671657 h 3260	AD3
			Cuttings			The Product of the second								ARB
			l ·				40.42							DB
		С		1.6 FLOAT			11.59	22.51	64.93	15		49		ADB
				FLOAT			11.70	22.73	65.57					D3
				FLOAT			· · · · · · · · · · · · · · · · · · ·							ADB
													i	DB
	Å.			FLOAT	and the second second	┝_、 ,──┤								ADS
	19 J.								•			1		DB

 \frown

CROWS NEST RESOURCES - ALYSIS REPORT

AREA: Lilly Burt

HOLE NO. LB-2 DATE: March 28/80 ANALYSTBernie Hudyma

LAB. NO.	SAMPLE NO.	SEAM	INTERVAL (METRES)	FRACTION	AIR DRY LOSS	% MOISTURE	% ASH	% V.M.	% F.C.	F.S.I	SULFUR		BTU/ LB	CALC. BASIS
-705			193-195	RAW	12.87	.51	36.42			1	002.01			ADB
			Drill Cuttings		Sec. 2. 19								2	ARB
			Cuttings				36.61	[·····		<u> </u>		<u>.</u>		08
		С		1.6 FLOAT		.77		21.03	64.31	1		55	<u> </u>	ADB
					· 新闻的 (1987-197	1.485.57 51.1	24.00	21.19	64.81					OB
				FLOAT					04.01					ADB
						44 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -								DB
				FLOAT		2 ¹						في وي في تشكير الم		ACB
														D3
-706			225-227	IRAW		·	00 04			1				ADB
	ĺ						<u> </u>						**************************************	ARB
						an a	28.48	······						DD
				1.6FLOAT		.56		21.42	68.28	15		66		ADB
		В						21.54	68.65					DB
				FLOAT										ADB
						and the second								
				FLOAT								1000 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		ADB
														DB
-9			Composite	RAW		.83	42.68			1				ADB
			of 79-											ARB
			702+703+ 704+705 +	······································			43,03		,					D3
			706	1.6 FLOAT		1.19	12.03	22.17	64.61	1		48		ADB
							_12.17	22.44	65.39			A	· · · · · · · · · · · · · · · · · · ·	DB
				FLOAT		Sec. Bastin lines	•							ADB
ļ										!				DB
ł	1			FLOAT	all a start start								3	ADB
	<u>р</u> .						1			ĺ		1	<u></u>	DB

SOLID FUEL ABALYEIS LABORATORY DEPORT OF ABALYSIS HEAD: W.J. AUNTODMERY

I.D. NUMBER	2691-80 LILL4B0R4- 31-03-80
-------------	-----------------------------------

	AS REC'D	DRY
ROXIMATE ANALYSIS		
loisture	1.81	
ish	13.08	13.32
olatile Matter	21.55	21.95
ixed Carbon (By Difference)	63.56	64.73
LTIMATE ANALYSIS		
Serbon	74.63	76,01
lydrosen	3,95	4.02
ulehur	0.31	0.32
litrosen	0.94	0.96
ish	13.08	13,32
xsden (By Diffe rence)	5,28	5+37
ALORIFIC VALUE		
alories per Sm.	7118	7249
TU per 16.	12812	13048
SH FUSABILITY	OXIDIZING	REDUCING
nitial		2370
oftening		2700
emispherical		2700+
luid		+

. .

. .

4.2

()

1

Í

17

ς.

RHUR DILATOMOIER DATA

Dilatation

Ti	-	Soft	Temp.	С	O,
Tii		Мах.	Cont. Temm.	C	Ó
Tii		Мах.	Dil. Temp.	С	0
Contr	ract	tion		Z	0.0
Dilat	ati	ion		%	0.0

PETROGRAPHIC DATA

VITRINOID TYPES

÷.

í

2

è

.

1

.1

1

،

1

.

PETROGRAPHIC COMPOSITION

TYPE	PERCENT	REACTIVE COMPONENTS	VOLUME %
09	0.0	میں میں _{اسل} ہوتے ہوتے ہوتے ہوتے ہوتے ہوتے ہوتے ہوتے	
10	0.0		
11	7.3		
12	22.0	Total Vitrinoid	36.6
13	7.3	Reactive Semi-Fus.	20.7
14	0.0	Exinoid+Resinoid	0.0
15	0.0	Total Reactive Comp.	57.3
16	0.0		
17	0.0		

PETROGRAPHIC INDICES

Mean Reflectance	1.2
Balance Index	0.0
Strength Index	0.0
Stability Index	0.0

INERT COMPONENTES

Inert Semi-Fus.	20.8
Micrinoids	3.2
Fusinoids	11.1
Mineral Matter	7.6
Total Inert Comp.	42.7

DOC. NO. 80 1 1 7

SOLID FUEL ANALYSIS LABORATORY Report of Analysis HEAD: W.J. Muntgohery

SAMPLE NUMBER	2691-80
I.D. NUMBER	LILLYBURT
DATE REC'D	31-03-80

%

ASH ANALYSIS

COMFONENT

	Si02	55.33
	A1203	25.60
	Fe203	4.43
•	TiO2	1,75
	P205	0.49
	CaO	4.01
-	MgO	1.96
	S03	2,50
	Na2O	0.15
	K20	0.90
	SrO	0.07
	BaO	0+34
	Mn304	
	LOF	0.28

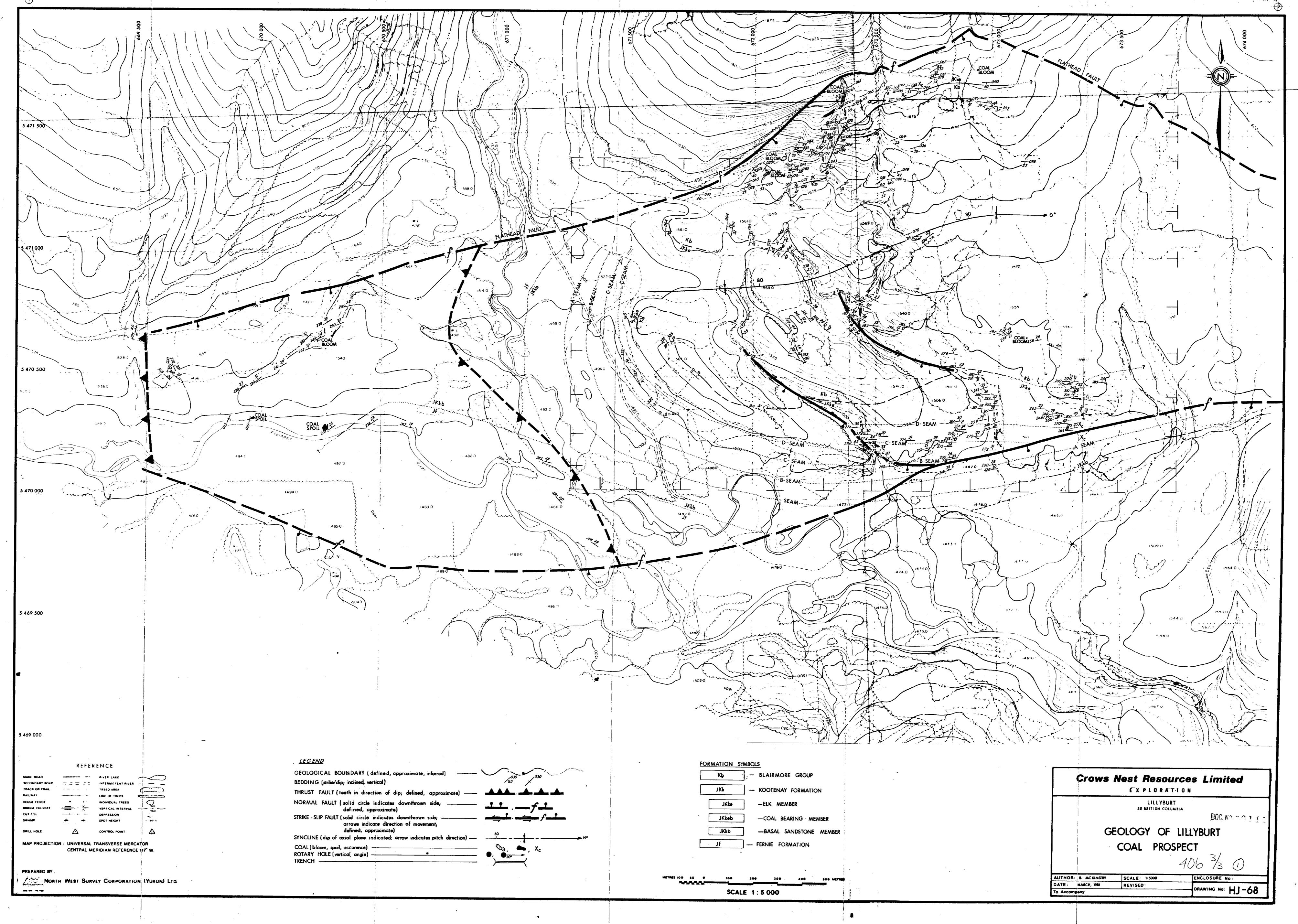
Chlorine	0.17
Fluorine	94 100

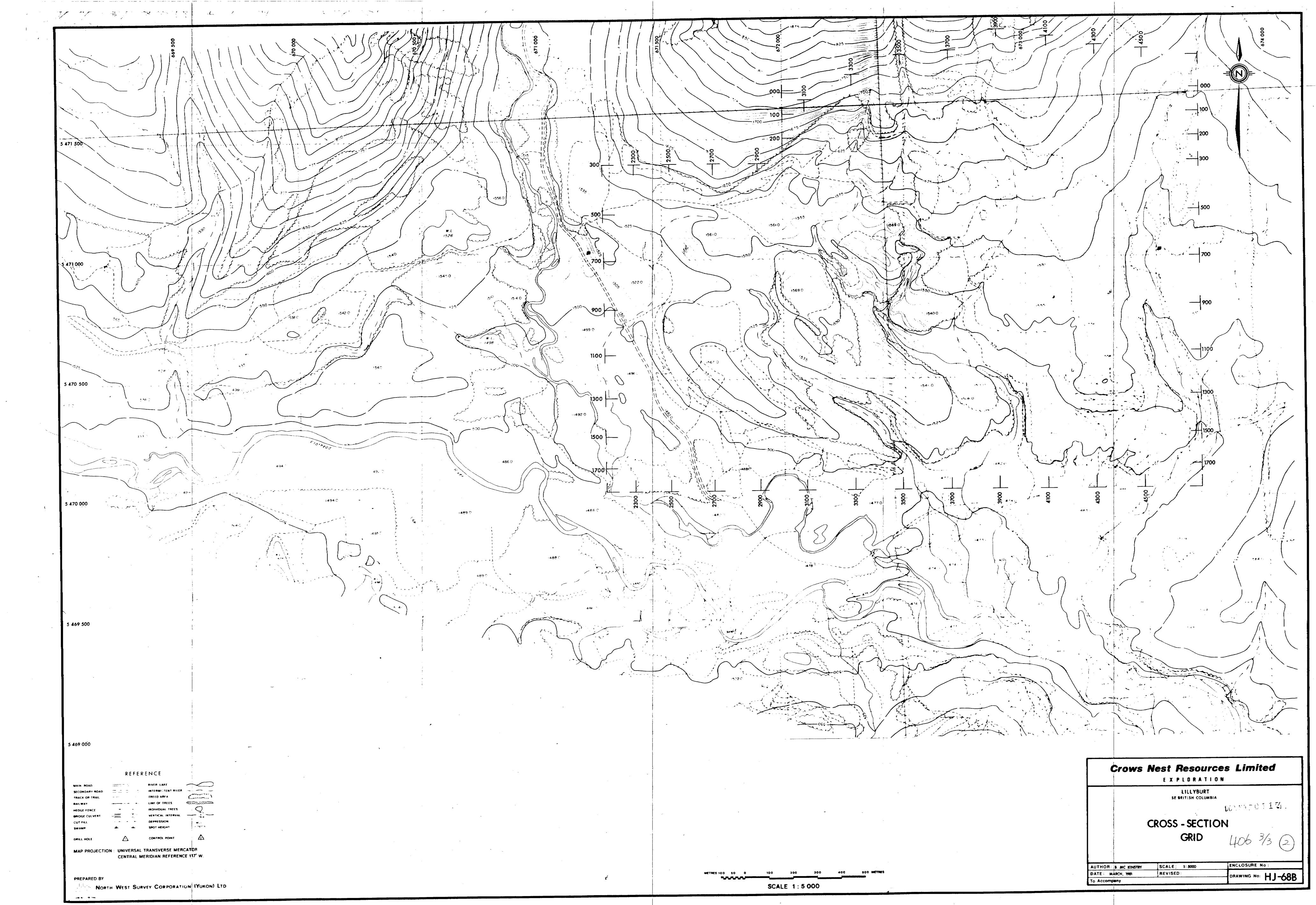
~ **- -**

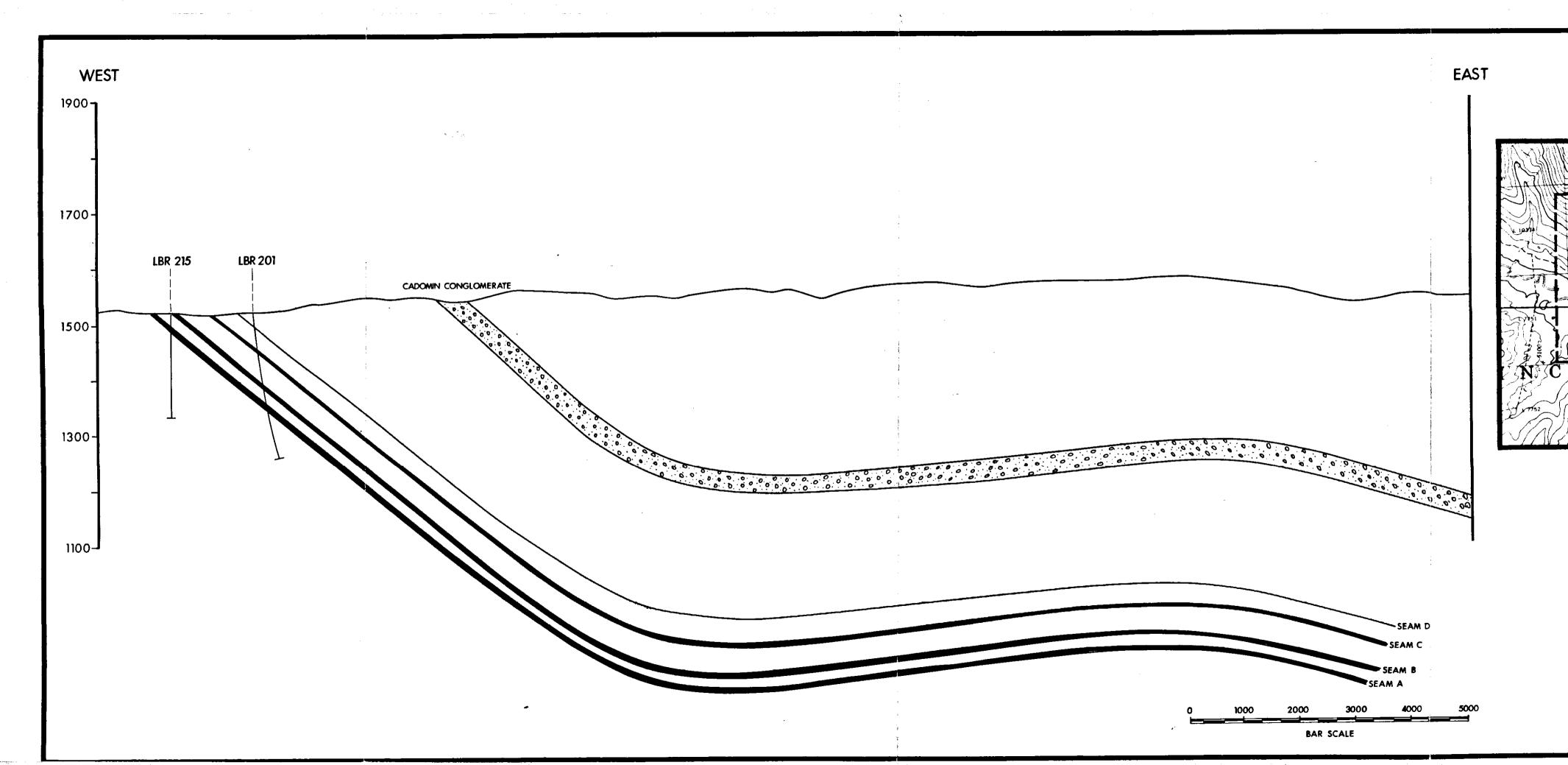
.....

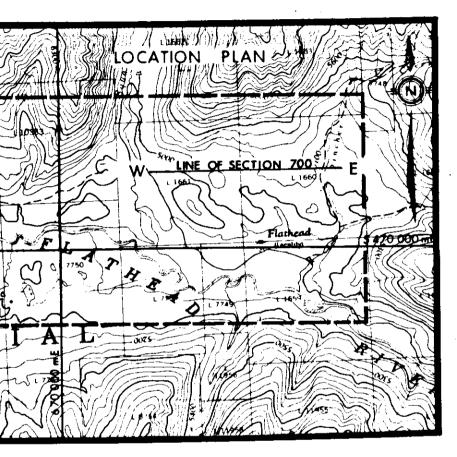
TRACE ANALYSIS

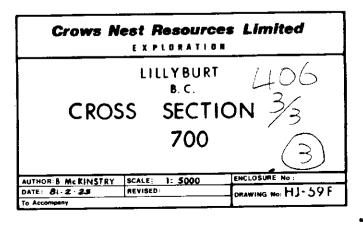
•	COMFONENT	PPM
	 Cd	0,80
	Рb	10.50
	Ni	14.50
_	Hg	0,09
•	Be	1.20
	Cr	12,50
-	As	0.80
•	Sb	0.78
	Se	0.87

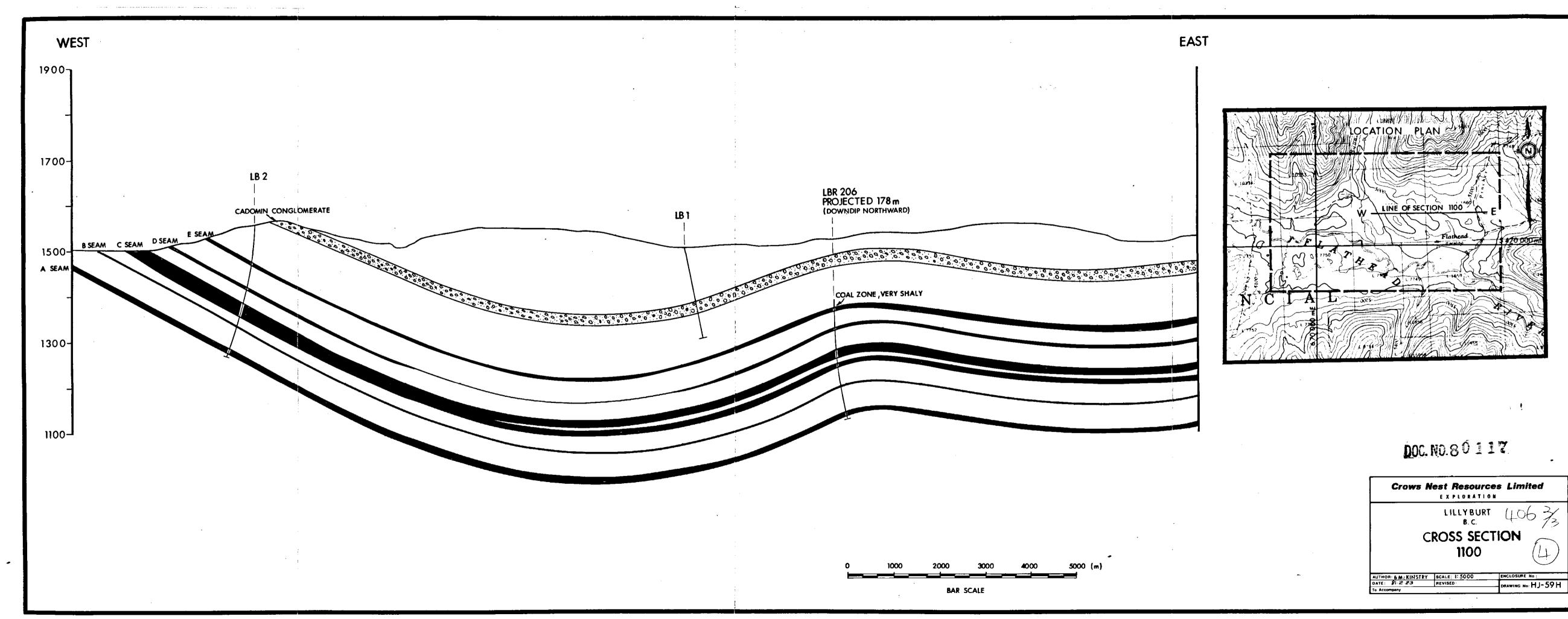

GRINDABILITY INDEX(HARDGROVE)

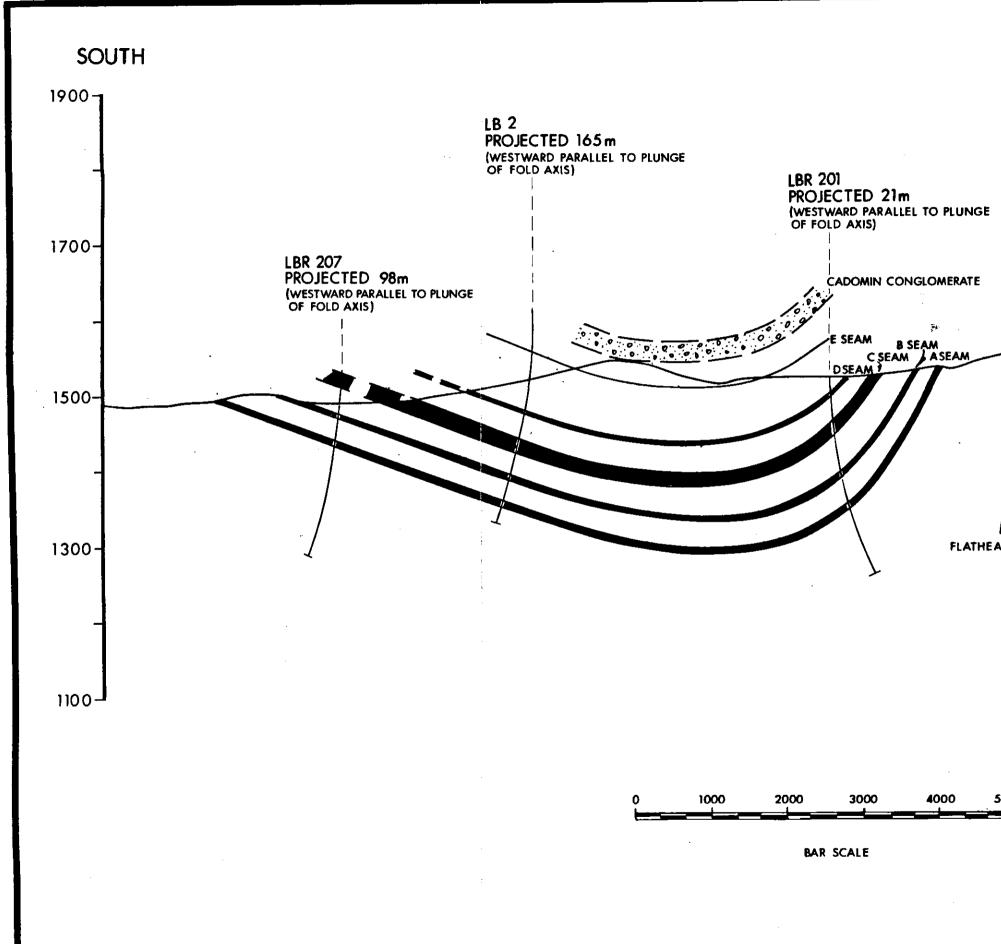

86


Molfoning REPORTED B

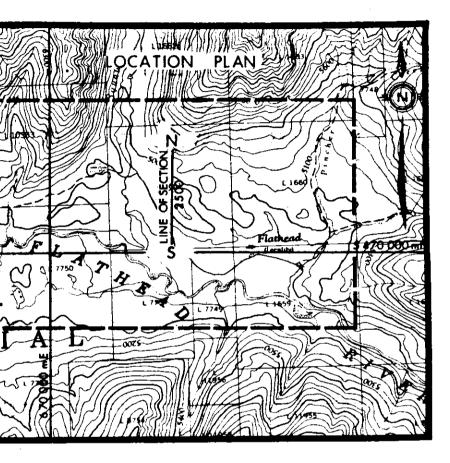



DATE: 10-07-80

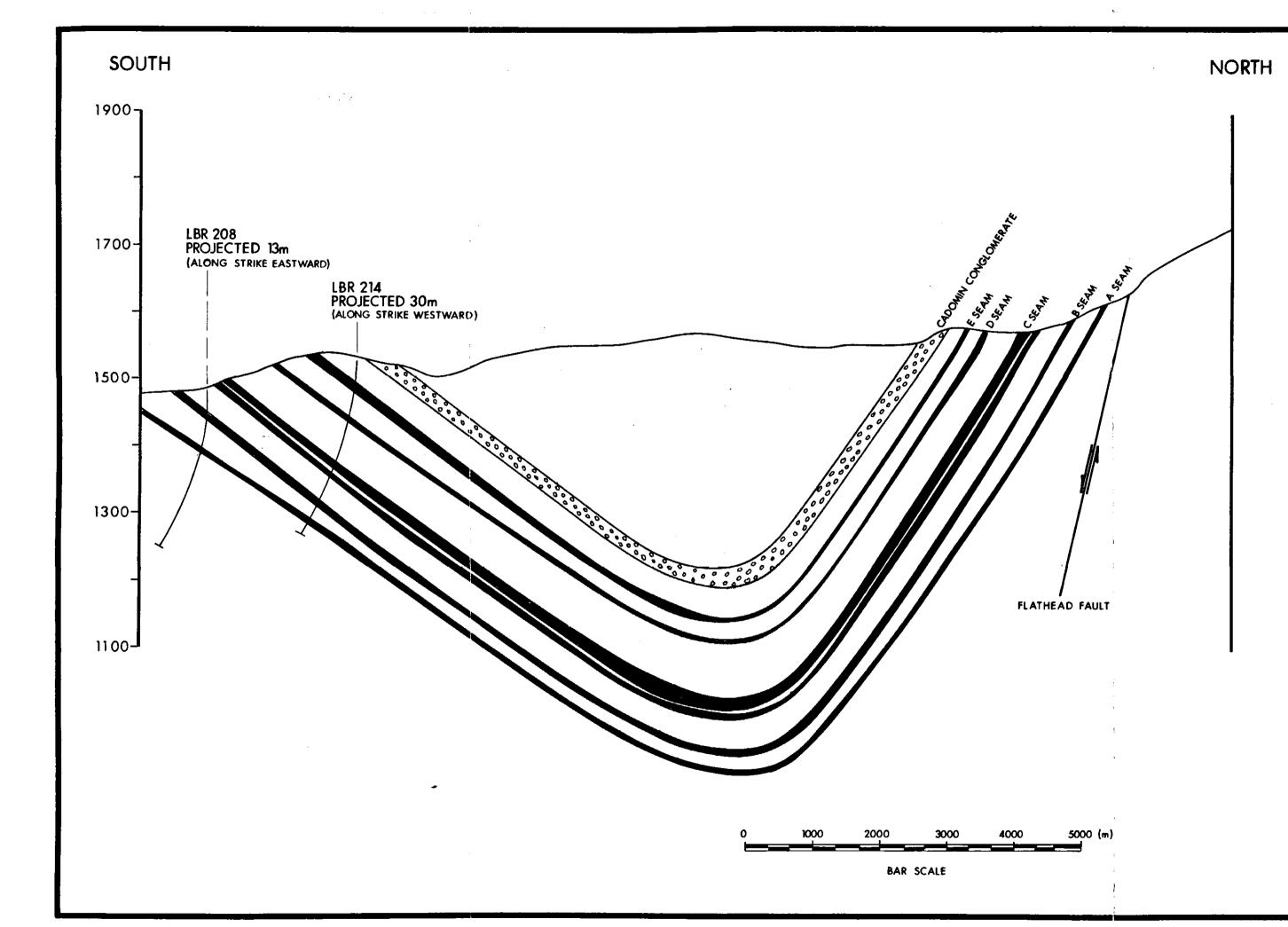




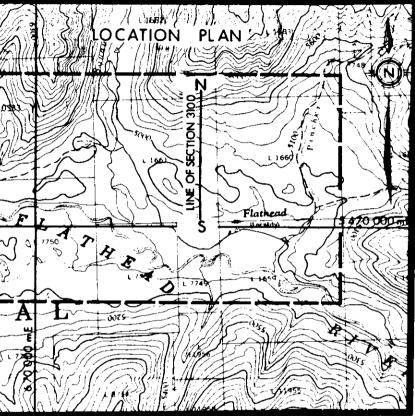
seriga an sa



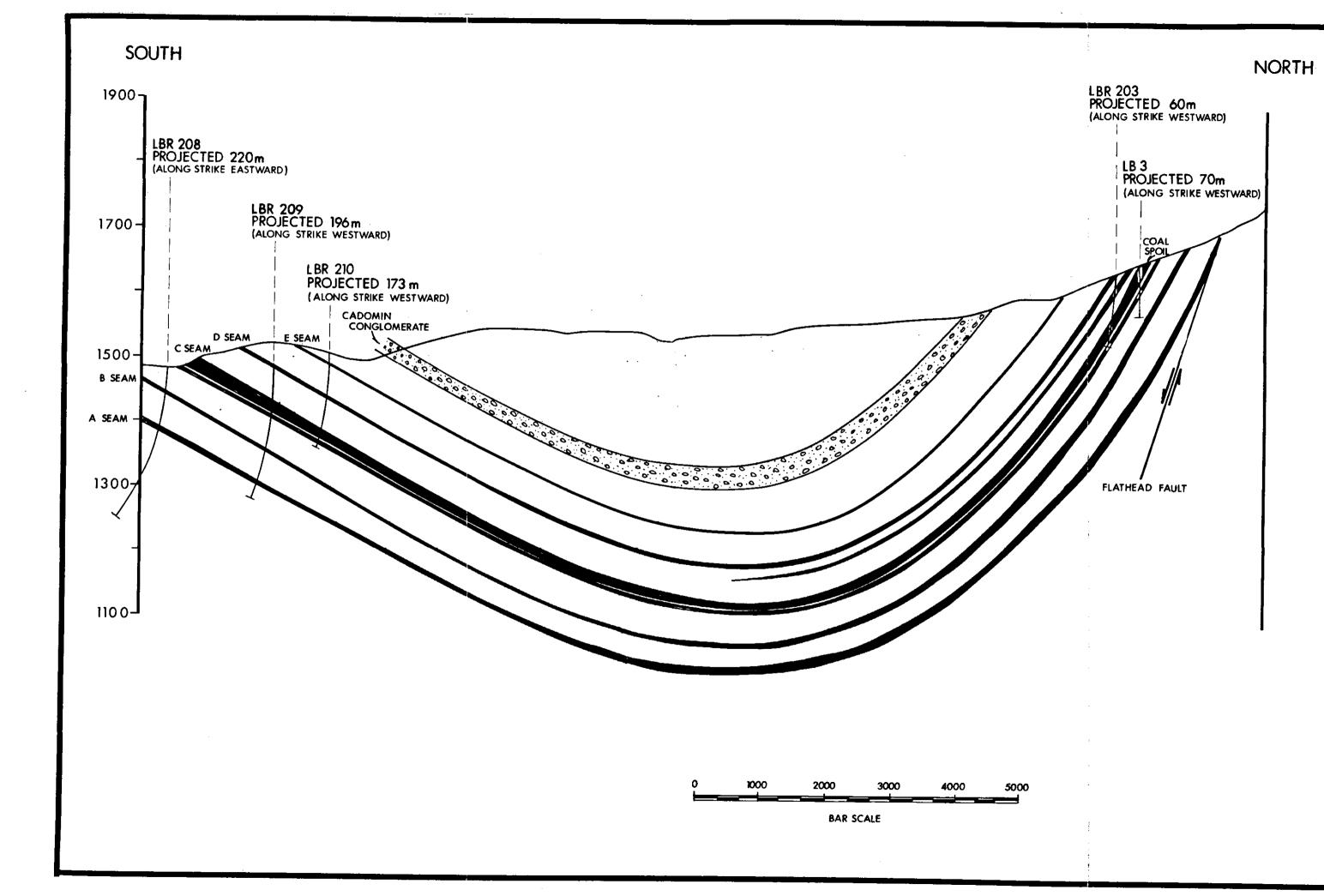
NORTH

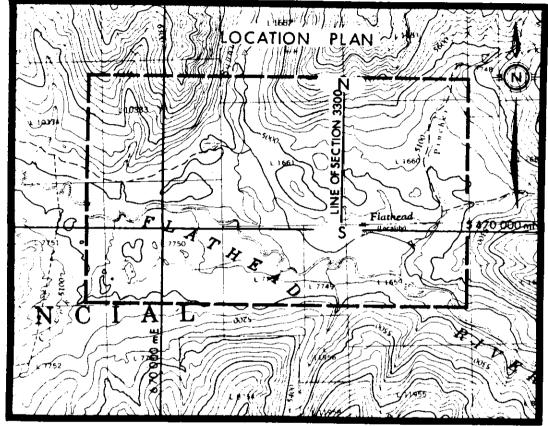

ì

FLATHEAD FAULT


5000 (m)

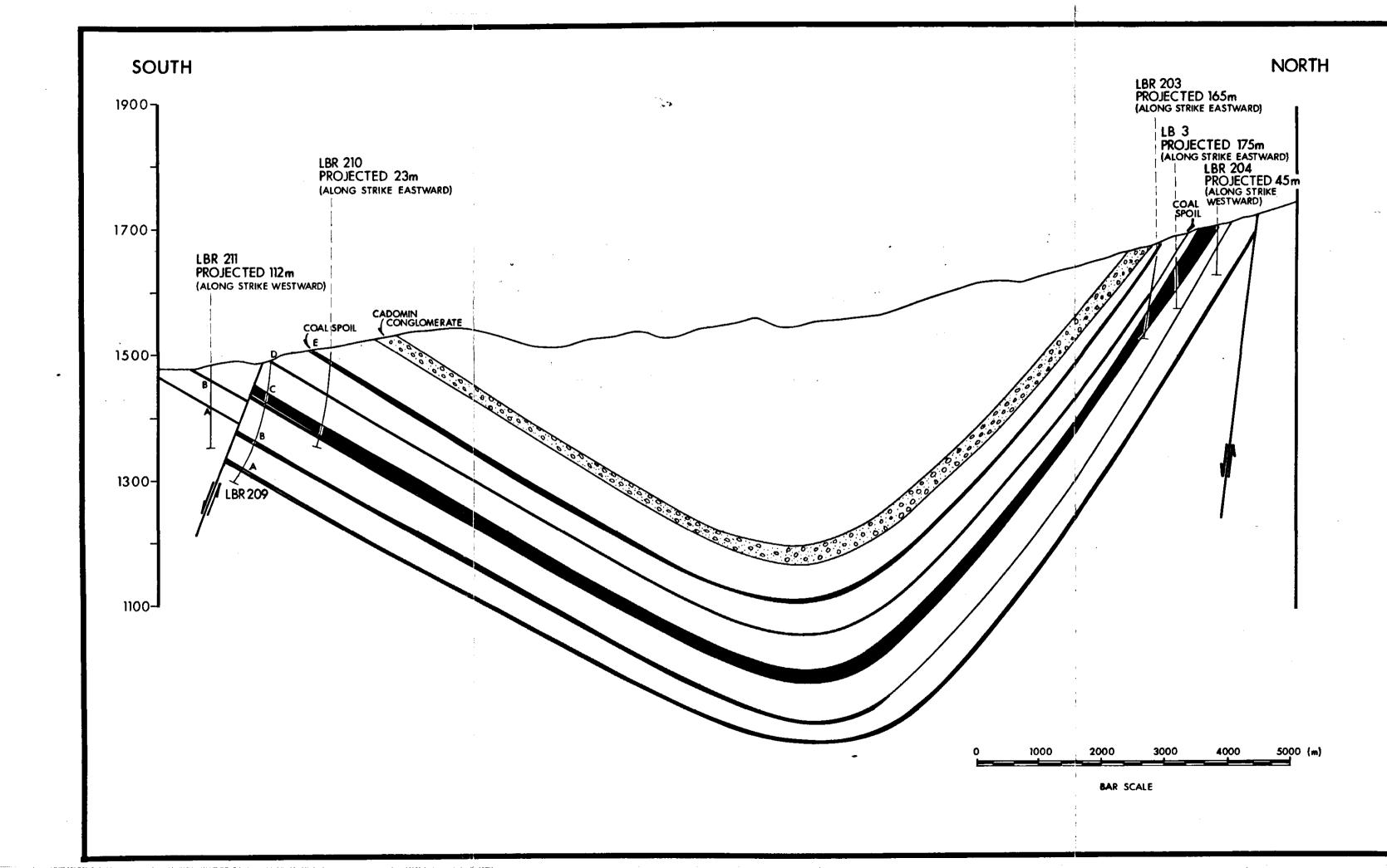
Crows Nest Resourc	
LILLY BURT B. C.	406 33
CROSS SEC 2500	TION 5
AUTHOR: 8 Mc KINSTRY SCALE: 1: 5000	ENCLOSURE No :
DATE: 81-2-29 REVISED:	DRAWING No: HK-59B
To Accompany	

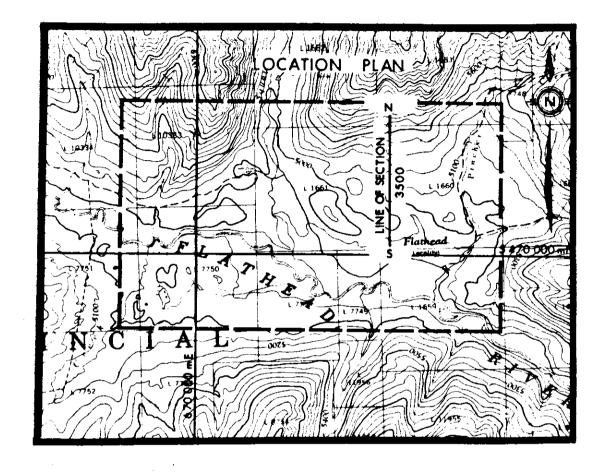



•

•

Crows Nest Resources Limited						
CROSS SECTION 3100						
AUTHOR B MCKINSTRY	SCALE: 1: 5000	ENCLOSURE No :				
DATE: 01 - 2 - 23	REVISED	DRAWING No: HK-59E				
To Accompany	DHAWING NO: TIN-J7E					

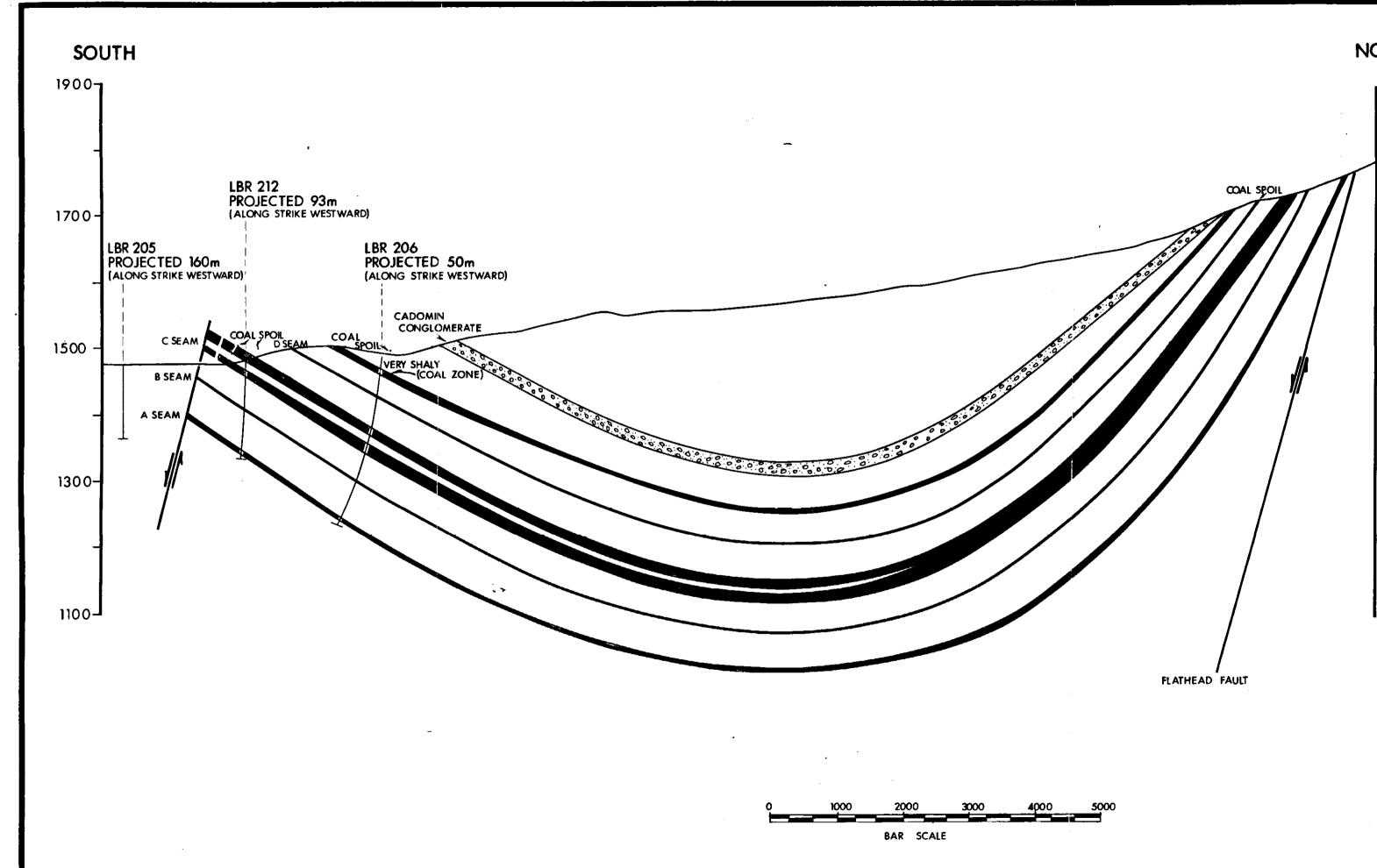




.

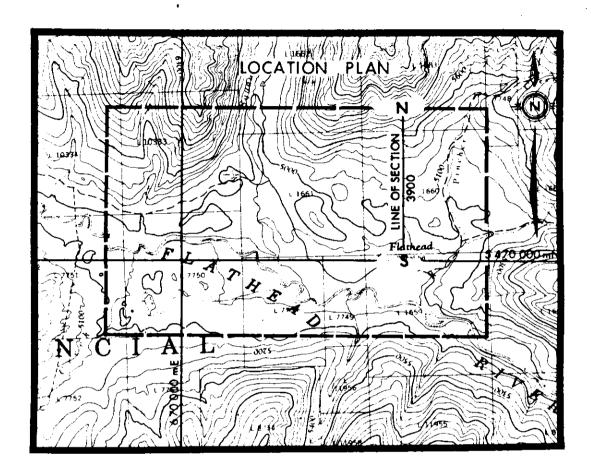
DGC. NO. 80 117

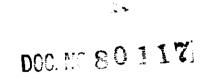
Crows N	EXPLORATIO	
	LILLYBURT B. C.	406 %
C	ROSS SECT 3300	ION (7)
AUTHOR B MCKINSTRY	SCALE: 1:5000	ENCLOSURE No :

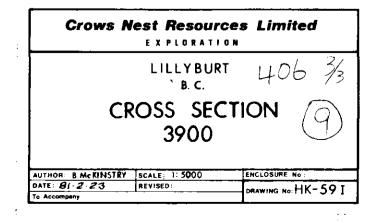


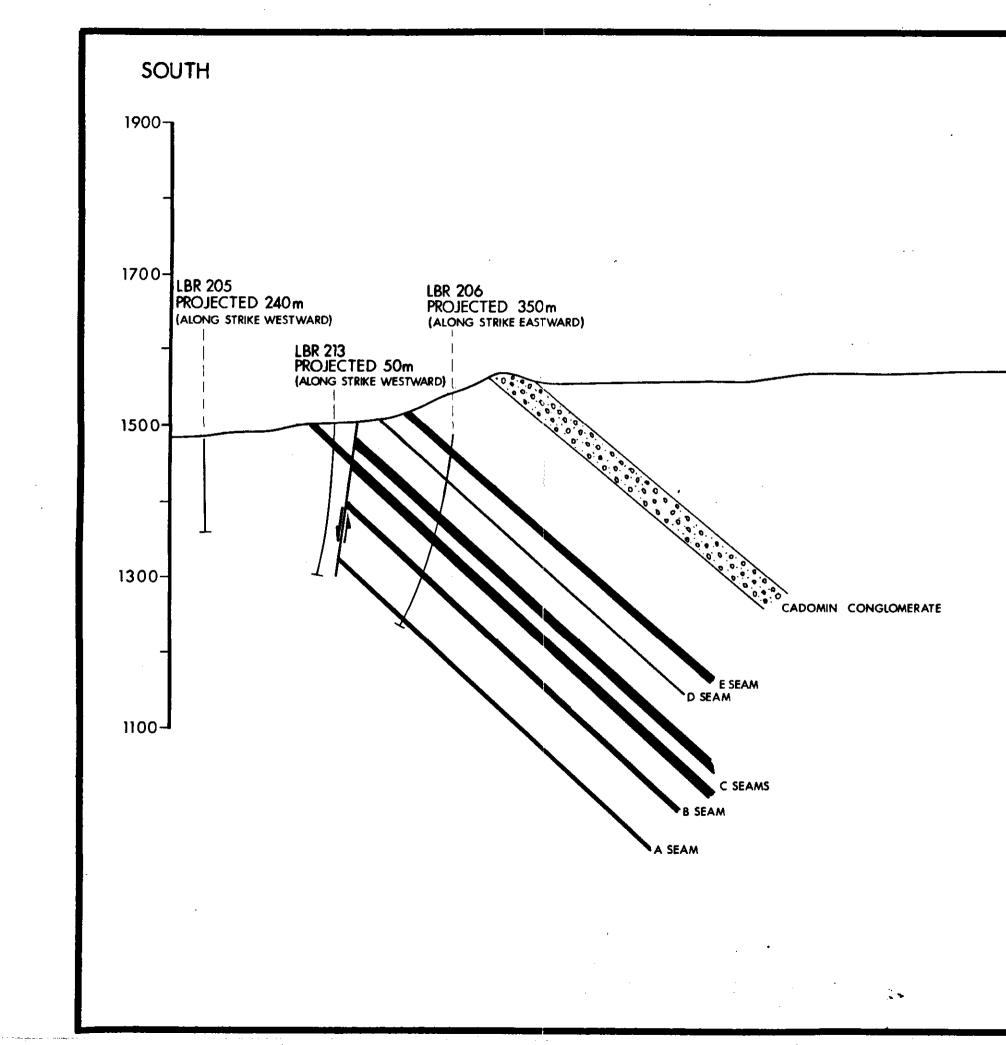
1

· ·

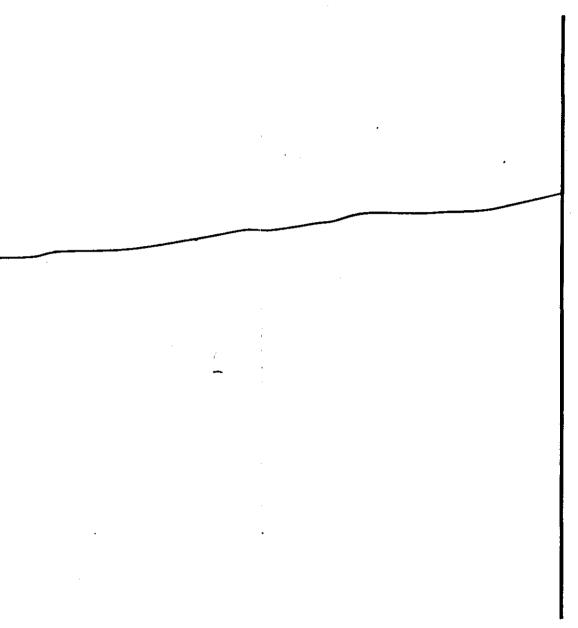

Crows Nest Resources Limited EXPLORATION LILLYBURT 406 % P.C. CROSS SECTION 3500 AUTHOR: B. MCKINSTRY SCALE: 1:5000 ENCLOSURE No: DATE: BI 2:23 REVISED: TO Accompany DRAWING No: HK-59G


-- ***




NORTH

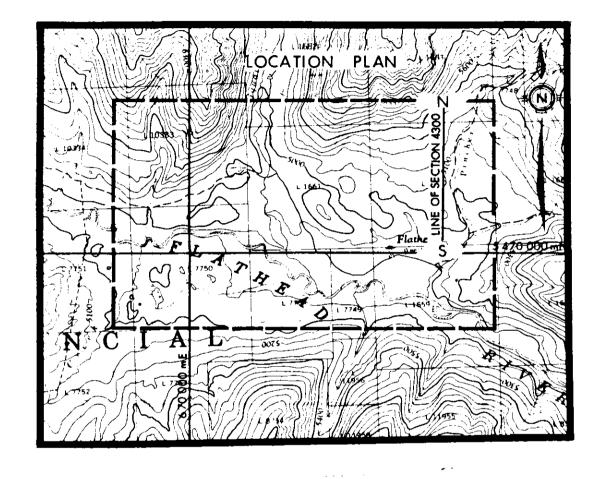
.



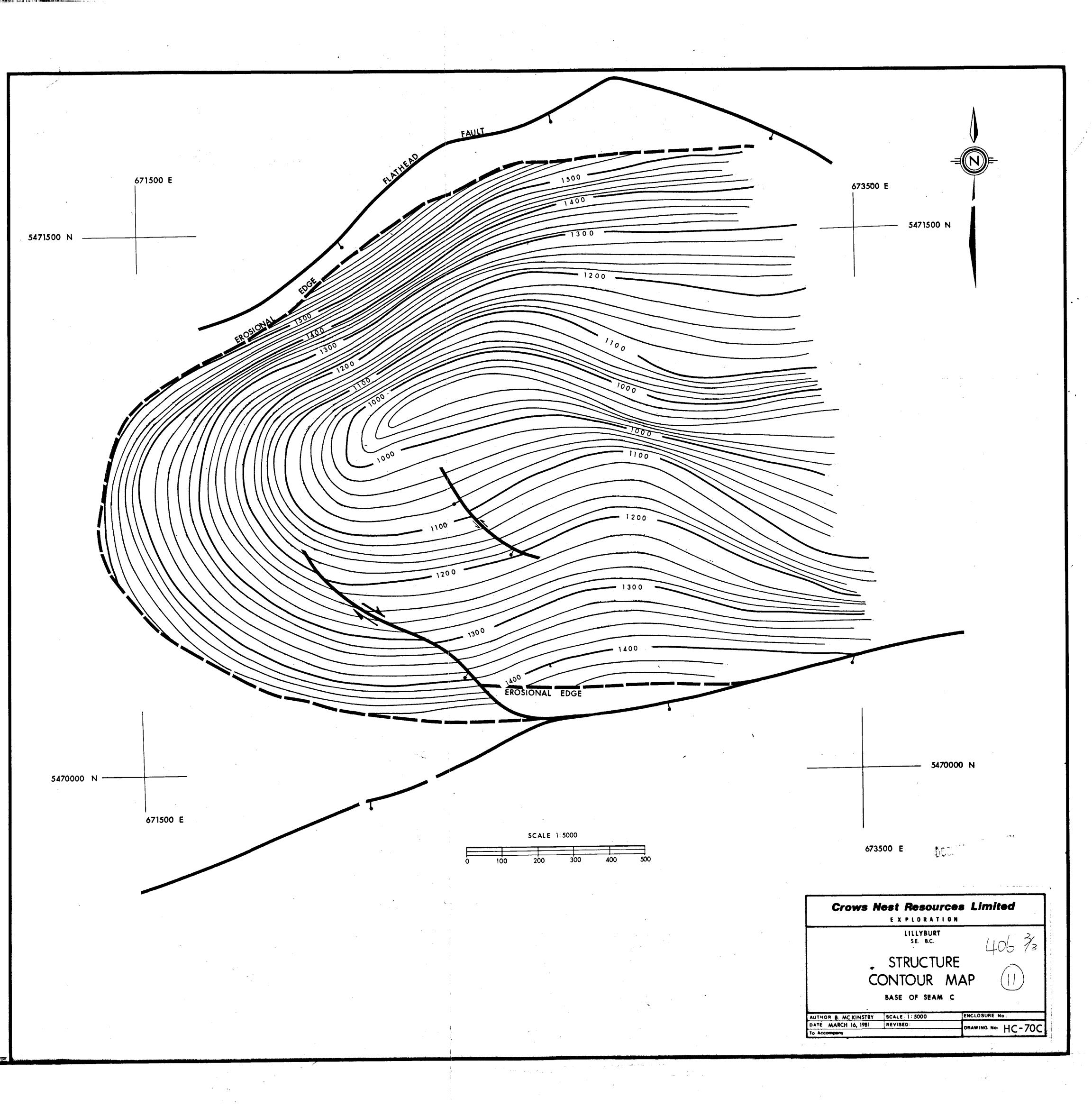
1. July 214

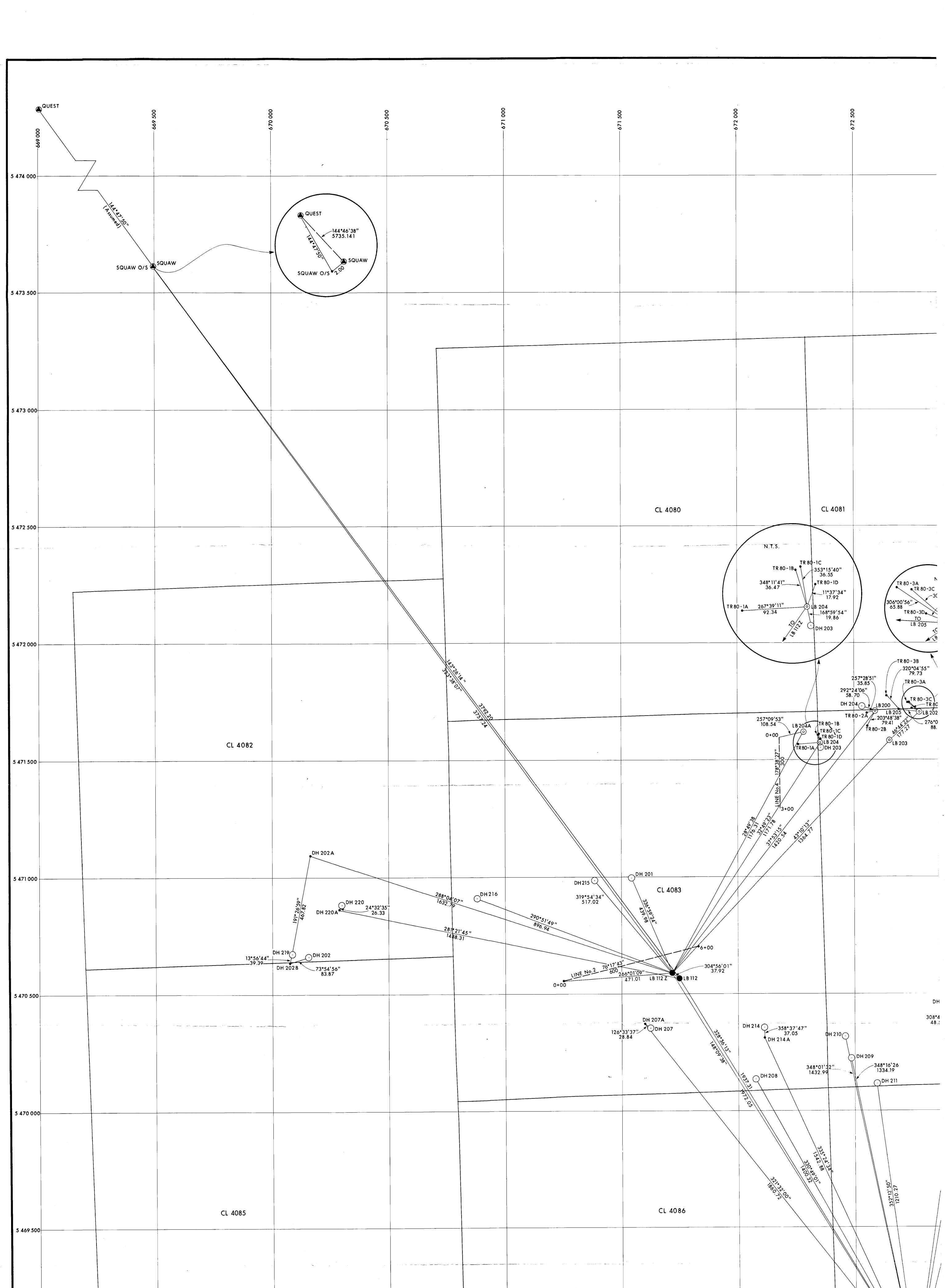
·

NORTH



0 1000 2000 3000 4000 5000


BAR SCALE


.

•

Crows N	EXPLORATI	c es Limited		
	LILLYBUR B.C.	T 406 3/3		
CROSS SECTION				
AUTHOR: B MCKINSTRY	SCALE: 1:5000	ENCLOSURE No :		
DATE: 81 2 23	ATE: 81-2-23 REVISED:			
To Accompany		DRAWING NO: HK-59K		

•

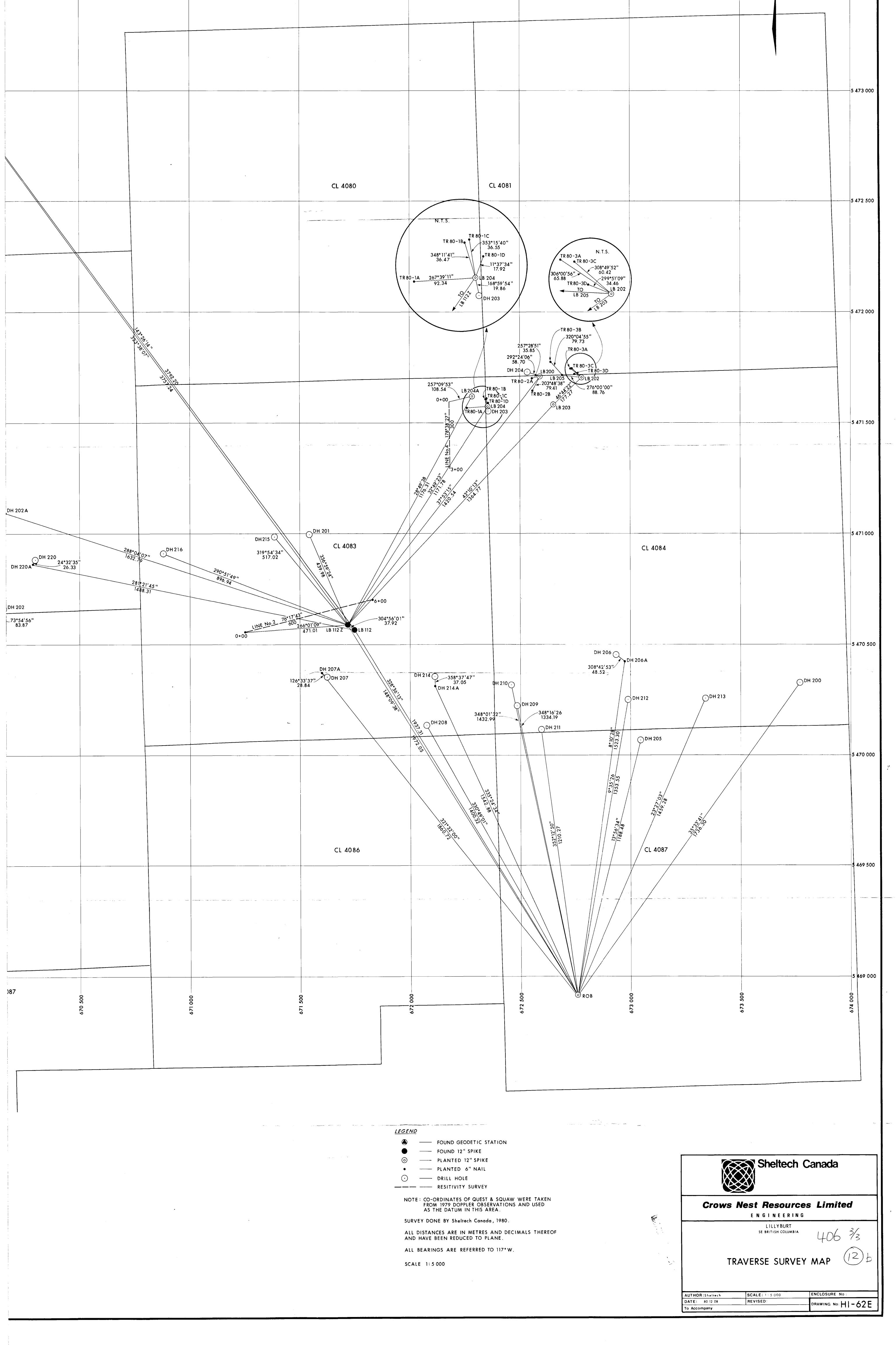
Ν.

.

•

I.

5 469 000-								
00		200	CL 4087	500		200	000	OOS ROB
669 (699 7 7 0 7 7		670		671	672	\$7:
	,	CONTROL STATIONCONTROL NORTHINGEASTINGELEVATIONQUEST5 478 299.78666 184.062441.74SQUAW5 473 613.92669 492.352364.26SQUAW O/S5 473 612.77669 490.722363.26LB 1125 470 566.86671 749.741566.82LB 112 Z5 470 588.57671 718.651565.19ROB5 468 913.26672 758.981627.81						
		IRAVERSEPOINTSLB 2005 471 709.69672 591.021708.99LB 201LB 2025 471 705.42672 781.481683.41LB 2035 471 583.93672 652.391673.36LB 2045 471 573.27672 353.811662.81LB 2055 471 619.11672 285.83-LB 2055 471 094.99670 116.381590.86DH 202A5 470 636.48670 073.511530.73DH 206A5 470 370.15671 601.501490.31DH 207A5 470 316.20672 116.941535.25DH 220A5 470 860.04670 290.611535.72					LEGEND	
		RESITIVITY SURVEY 0+00 5 470 556 671 249 6+00 5 470 698 671 832 0+00 5 471 595 672 180 3+00 5 471 295 672 187	2				 FOUND GEODETIC FOUND 12" SPIKE PLANTED 12" SPIN 	٢E
		Image: Trenches Trenches 80-1A 5 471 569.5 672 261.6 1658.2 80-1B 5 471 609.0 672 346.4 1660.9 80-1C 5 471 609.6 672 349.5 1661.3 80-1D 5 471 590.8 672 357.4 1662.6 80-2A 5 471 637.0 672 556.0 1701.2 80-3A 5 471 744.2 672 728.2 1700.5 80-3B 5 471 775.9 672 642.1 1722.1					PLANTED 6" NAI O DRILL HOLE RESITIVITY SURVE	Y
		80-3C 5 471 743.3 672 734.4 1698.7 80-3D 5 471 722.6 672 751.6 1688.8					NOTE : CO-ORDINATES OF QUES FROM 1979 DOPPLER OB AS THE DATUM IN THIS	AREA.
		DRILL HOLES 200 5 470 325.71 673 768.79 1502.90 215 5 470 984.11 671 385.69 1521.14 216 5 470 908.01 670 880.52 1506.93 201 5 470 993.54 671 546.67 1520.07			•		SURVEY DONE BY Sheltech Can ALL DISTANCES ARE IN METRE	S AND DECIMALS THEREOF
		201 5 470 573.54 677 54.07 1520.57 202 5 470 659.72 670 154.09 1520.53 203 5 471 553.78 672 357.60 1662.25 204 5 471 732.06 672 536.76 1706.54 205 5 470 066.72 673 045.35 1478.80					AND HAVE BEEN REDUCED TO ALL BEARINGS ARE REFERRED	
4	(12)a	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					SCALE 1:5000	


 (\mathbf{N})

e de la composition de

and the second second

5 473 500

.

CROWS NEST RESOURCES LIMITED B. C. COAL LICENCES BLOCK: LLUNUT TENURE STANDING GROUP: 10, 245 PROJECT BL.OCK SROUP LICENCE ACU/ADH RENTALS REQUIREMENT HORK TOTAL TOTAL LICS MAEA TOTAL TOTAL TERP AREA 1014 ANALIAL TIGTE TO EXPIRED CLERKENT YEAR ME - ULTLERDIT I BASHTARAT B 8:03 8:03 1:32 0 1:00 0 1:420 0 1:4280 0 1:4280 0 1:476 NAME NAME NO. DESCRIPTION FEES

1000

1 1462

10 2479 1

ND.

245

EXPLORATION

LILIYAUT 10 2479

ï

LILLYBURT : 10 (2079)

į.,

uddi -1.1663 259 . . 1012 : L 10333 259 4083 L 1661 259 IOH I L 1660 ; **5**9 1085 · L 7750 **Z**9 1 7749 6 1006 220 L 7754 1 : 4087 : L 1659 259 1016 1 7752 259 4089 1 7753 1 102 ı. **511.10**1 74, 372

PROJECT: YEAR: 181

2016, 196... 416-3 (1.415)

IDOTEMAY LAND DISTRICT

BUDGET EXP POTL CONTITNENTS. J. V.

BTACK THEM B.C. BEN 1 DESCRIPTION

445 ۲,

CLANDAT CLAN AFE B10-3

1151 500

49 3 1 30,938 3-3/4 343,501 JEC. 31

DATE: NHCH 18, 1981

REFINANCE

(ne land

AP Sout J 1 NOAN, DONE

SINCE LAST

AMINERSANY lu ior

I III LUDED

CENERAL RETAINES FILL NECESSARY LINES AND COLUMNS ONLY + COAL DEVELOPMENT POTENTIAL IS "Y" (PRINE + UNLESS OTHERWISE STATED, LICENCES HELD BY SHELL CANADA RESOURCES LTD.- CNR. 15 THE OPERATOR.

1960

1978-1979

1 -

YEAR 0

71 300

12,355 30

.

259

1.1

N