LILLYBURT	
LILLIBORT	
SOUTHEAST	
B.C.	
1985	
GEOLOGICAL	
REPORT	

December 20, 1985

Ministry of Energy, Mines and Petroleum Resources 525 Superior Street Victoria, B.C. V8V 1T7

Dear Sirs:

Enclosed please find our report on the Lillyburt Project.

This report has been prepared by Mr. B. McKinstry, an employee of Crows Nest Resources Limited.

Mr. B. McKinstry, M.Sc., graduated in Geology from Carleton University, Ottawa in 1971. Prior to graduation, Mr. McKinstry worked as an assistant for a major mining firm and after graduation as a geologist with a mining firm, a research assistant at Carleton University and a a geologist with a consulting firm. Mr. McKinstry has been employed by Crows Nest Resources Limited as a Staff Geologist, since 1981.

I consider the aforementioned geologist to be well qualified to undertake the responsibilities assigned on this project. I am satisfied that the attached report has been competently prepared and justly represents the information obtained from this project.

Yours very truly,

B.D. Ryan, P. Geol. Manager, Geology

GEOLOGICAL BRANCH ASSESSMENT REPORT

LILLYBURT PROJECT

Kootenay Land District, British Columbia
B.C. Coal Licence Numbers: 4080-4089 Inclusive; 5313, 7292
Group Number : 243
Owner: Shell Canada Resources Limited
Operator: Crows Nest Resources Limited

NTS: 82G/7 Longitude: 114° 37' West Latitude: 49° 22' North

Report Prepared By: B. McKinstry Staff Geologist December, 1985

•••

TABLE OF CONTENTS

- i -

LIST OF ENCLOSURES

SUMMARY

- 1.0 INTRODUCTION
 - 1.1 Location and Access
 - 1.2 Geography and Physiography
 - 1.3 Tenure of Land and Coal Rights

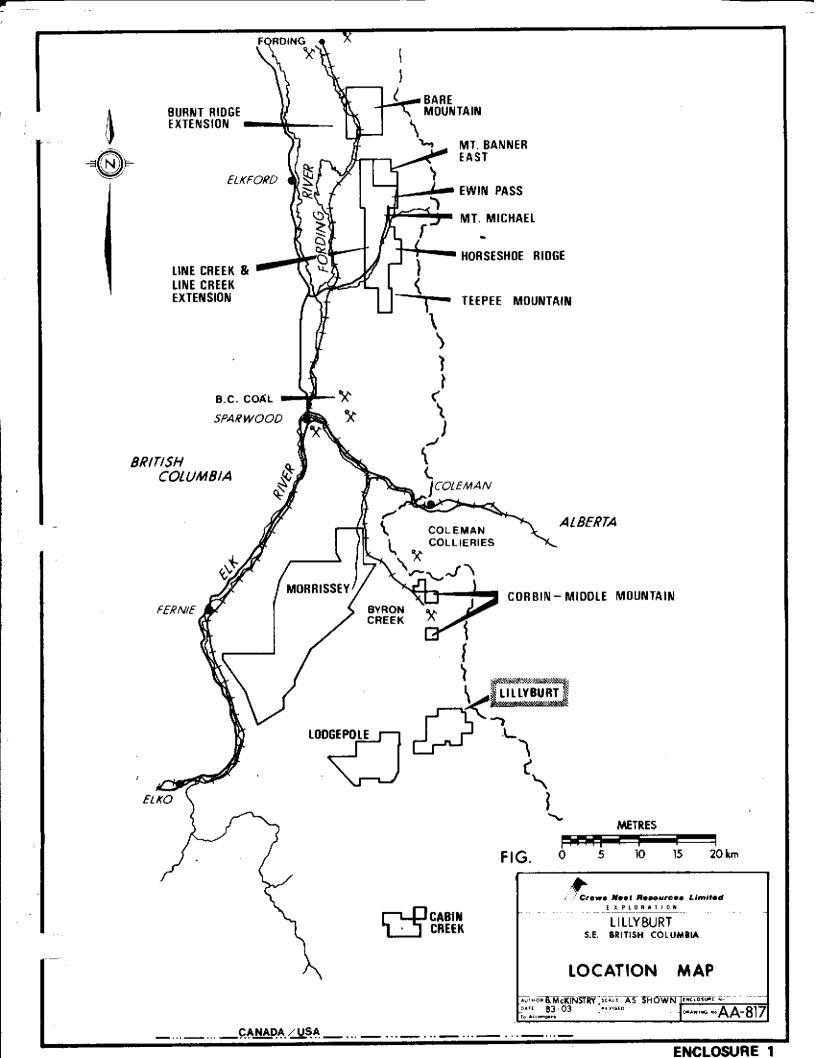
2.0 WORK DONE

- 2.1 Summary of Previous Work
- 2.2 Work Accomplished, 1985 (Licence 5313)
- 2.3 Costs of Work Done, 1985

3.0 GEOLOGY

- 3.1 Regional Geology
- 3.2 Geology of Coal Licence 5313
- 3.3 Structural Geology
- 4.0 RESERVES
- 5.0 COAL QUALITY (BOREHOLE 85-1)
- 6.0 RECOMMENDATIONS FOR FURTHER WORK
- 7.0 BIBLIOGRAPHY

PAGE


- ii -

LIST OF ENCLOSURES

ENCLOSURE 1 Location Map of Lillyburt Project, B.C. 1:250,000 ENCLOSURE 2 Access Map, Lillyburt Project 1:50,000 ENCLOSURE 3 Index Map to Coal Licences, Lillyburt Project 1:50,000 ENCLOSURE 4 Regional Geological Compilation Map 1:50,000 ENCLOSURE 5 Typical Stratigraphic Section, Lillyburt, B.C. 1:1000 **ENCLOSURE 6** Geology of Lillyburt (Revised 1985) 1:5000 Section A - A' ENCLOSURE 7 1:5000 CONFEDENTIAL **ENCLOSURE 8** Geophysical Logs & Quality Results DH85-1 ENCLOSURE 9 Descriptions of Rotary Cuttings & Thin Sections Cementing Report ENCLOSURE 10 Application to Extend Term of Licence; ENCLOSURE 11 Summary of Expenditures

C2/dn.3

SUMMARY

- iii -

The Lillyburt coal property is located within British Columbia coal licences 4082 through 4087 inclusive, and licences 5313 and 7292 covering some 1865 hectares of land. The licences are located in the northeast end of the Flathead River Valley in southeastern B.C. (Enclosure 1). Access to the property is obtained via the Corbin Valley forestry access road from the Corbin coal loading facilities (15 kilometers) or via the Lodgepole forestry access road from Morrissey Station on the main C.P.R. railway line (45 kilometers). Total rail distance to Roberts Bank, Vancouver, is approximately 1150 kilometers.

Coal licences, 4080-4089 (Group #243), have been held since 1978 by Shell Canada Resources Limited with operations carried out by its wholly-owned subsidiary, Crows Nest Resources Limited. Exploration to date has included 26 rotary holes, 4 diamond drill holes, numerous backhoe trenches, geological mapping, ground control and location surveys and photogrammetric mapping. In 1982, Shell Canada Resources Limited obtained coal licences 5313 and 7292 immediately to the east of the above mentioned licences. However, corporate evaluation of the Lillyburt project has required the forfeiture of licences 4080, 4081, 4088 and 4089 inclusive this year.

Geology within the area of interest is dominated by normal faults to the northeast and south, and by a thrust fault to the west. Drilling and mapping data indicate Jurassic-Cretaceous Fernie, Kootenay and Cretaceous Blairmore stratigraphy have been folded into an open doubly plunging asymmetric syncline with axial plane trending east-west. This structure is bounded on all sides by high angle normal faulting exhibiting considerable movement.

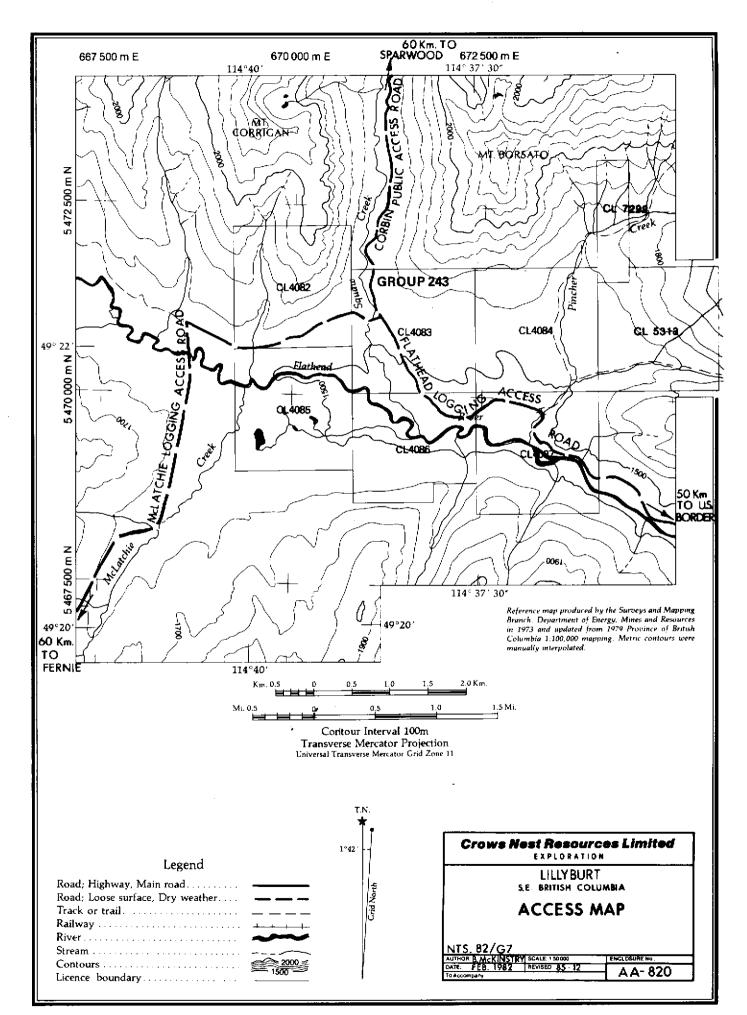
C2/dn.4

Thickness of the coal-bearing member of the Kootenay Formation is 300 meters on the south limb of this syncline but reduced to 140 meters on the north limb. Within the coal-bearing member, there are five seams of economic interest totalling 21 meters in aggregate thickness. All seams exceed 1 meter; with the thickest averaging 10 meters, being the third seam in an ascending order from the Fernie-Kootenay contact.

Total indicated resources of coal underlying group #243 within the property are estimated to be some 130 million tonnes. Geological in place "reserves" are calculated to be 24.9 million tonnes with an overburden ratio of 3.8 cubic meters rock per tonne coal. These figures may increase with the added coal potential underlying licence #5313.

Analysis from rotary cuttings and drill core indicate coal at Lillyburt to be medium volatile bituminous.

1.0 INTRODUCTION


1.1 Location and Access NTS 82G/7

The Lillyburt Coal Prospect is located in and near the Flathead River Valley in the Front Range of the Rocky Mountains of southeastern British Columbia.

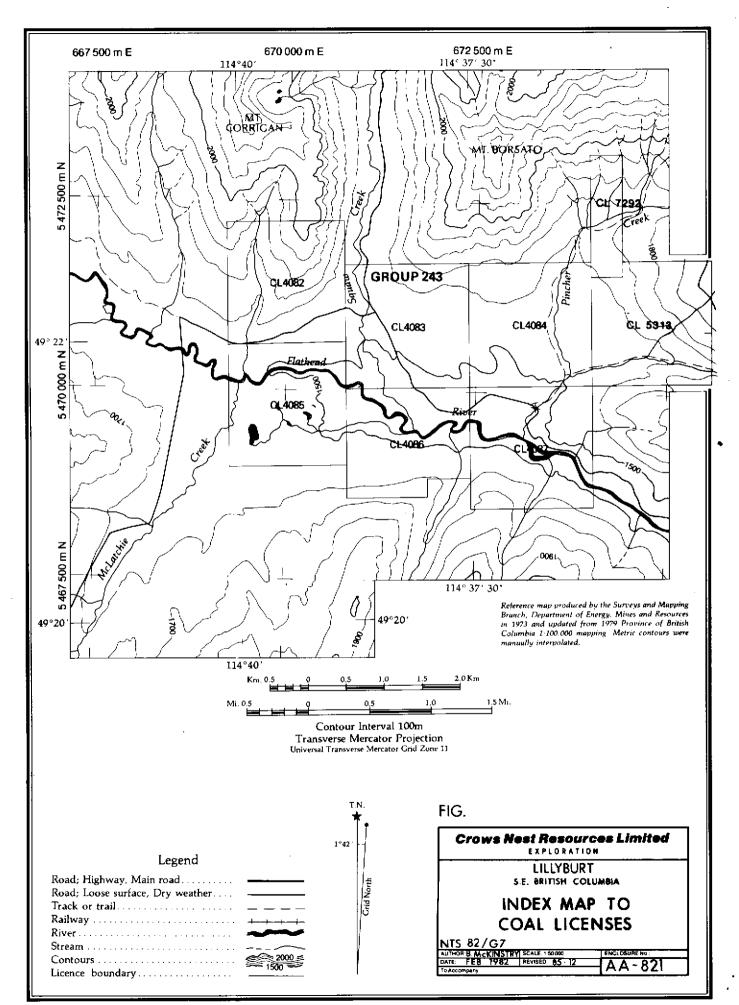
The prospect is 40 and 15 kilometers from the nearest railway points at Morrissey Station and the Corbin Mine Loop respectively. In addition, it is 60 kilometers by logging and forestry access roads from the towns of Sparwood and Fernie. (Enclosure #2). The port of Vancouver is approximately 1150 kilometers by rail from the property. Most of the project area has been extensively logged providing a dense network of roads throughout the property. These roads have been utilized for drilling access, backhoe trenching and geological mapping.

1.2 Geography and Physiography

Topography in the area is of relatively moderate relief ranging from 1480 meters near the Flathead River increasing to 1720 meters at the northern boundary. The Flathead River forms a natural boundary to the south while Squaw Creek bisects the property into east and west halves. Extensive logging operations have removed a substantial percentage of forest vegetation. The abandoned townsite of Flathead is located on Coal Licence #4087 within the property.

1.3 Tenure of Land and Coal Rights

The Lillyburt Coal Property consists of 9 B.C. Coal Licences, held by Shell Canada Resources Limited, a wholly-owned subsidiary of SCRL. The licences, #4080-4089, were acquired by SCRL in 1978 and were grouped (#243) in 1981. Licences 5313 and 7292 were purchased in 1982 from William Schenfield of Fernie, B.C. and have been included in group 243. A re-evaluation of geology and economic considerations has necessitated a decision to forfeit licences 4080, 4081, 4088 and 4089 inclusive this year. The licences now total some 1865 hectares of land. Enclosure #3 details the position of licence boundaries with respect to topographic features.


2.0 WORK DONE

2.1 Summary of Previous Work

In 1978, aerial photography and ground control surveys were done on photogrammetric topographic maps which were constructed at a scale of 1:5000 with five-meter contour intervals.

Reconnaissance geological mapping at a scale of 1:5000 was initiated in 1979. Preliminary rotary drilling was carried out on the property in three localities totalling 571 meters. In addition, three backhoe trenches and six hand trenches were dug for a total length of 30 meters.

- 2 -

During the 1980 field season, an additional nineteen vertical rotary holes were drilled throughout the property totalling 3388 meters. Three backhoe trenches were excavated along the north limb of the syncline for a total distance of 275 meters. Reconnaissance geological mapping continued at the scale of 1:5000. In 1981, 4 diamond holes and 3 rotary holes were drilled along with some road construction and detailed mapping at 1:5000 scale. This mapping encompassed all relevant outcrops on and around the licences. Upon acquisition of Licences 5313 and /292 in 1982, a report was filed (McKinstry, 1983) detailing the results of the off-licence mapping.

2.2 Work Accomplished, 1985 (Licence 5313)

Extensive logging operations on and to the east of licence #5313 in the past seven years has exposed sufficient outcrop to extrapolate geological contacts. W. Schenfield's trenching and prospecting activities in 1981 exposed coal showings close to the presumed trace of the Flathead normal fault. It was decided to test the validity of the coal showings with a shallow rotary hole in 1985. Subsequently, Western Hydro-Air of Calgary was contracted and mobilized to the site in September and proceeded to drill 110 meters of strata. High water pressures encountered in the hole at this depth prevented further penetration and the hole was cemented off with casing left in the ground. Fall weather conditions required a postponement of reclamation of the site until drier conditions prevail in 1986. The hole was

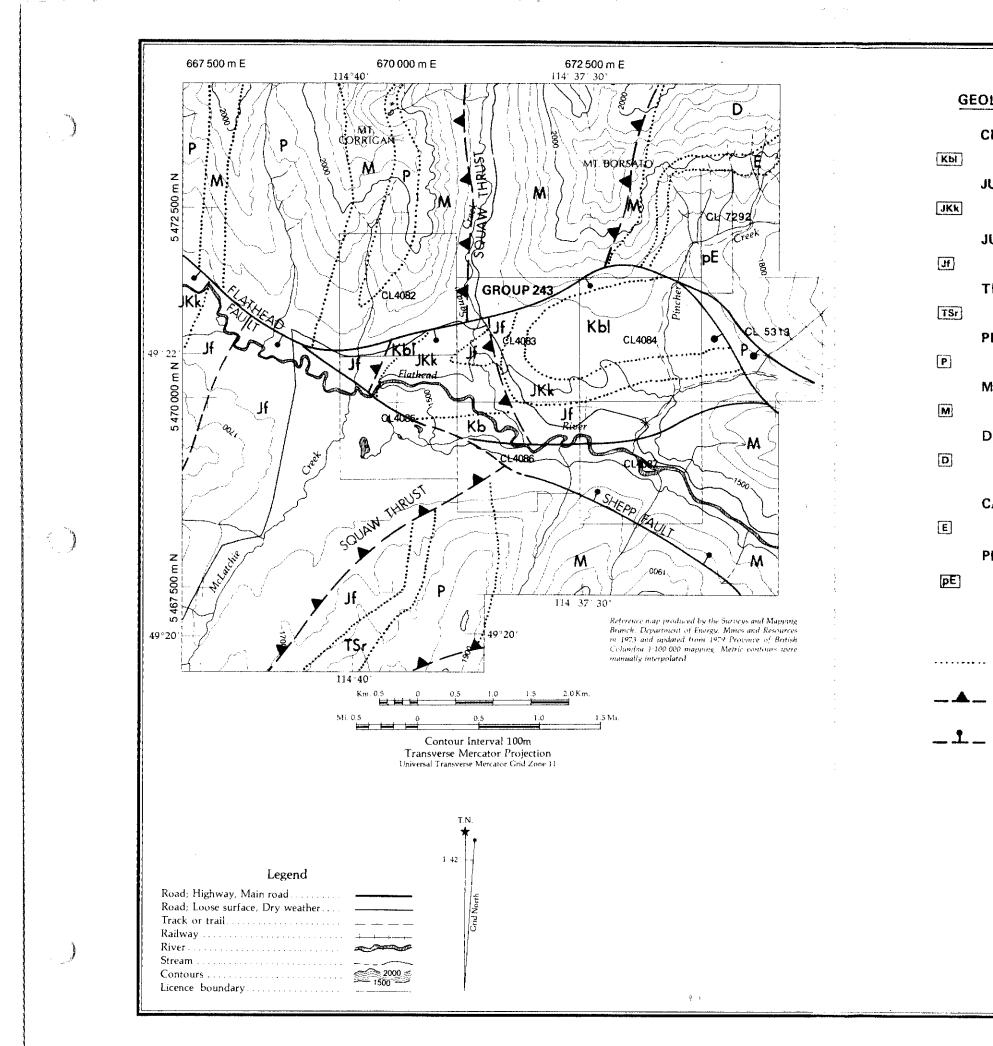
C2/dn.8

geophysically logged at a scale of 1:200 by Century Geophysics of Calgary, Alberta. Open hole conditions enabled the following suite of logs to be run; Gamma ray, Neutron-Neutron, Verticality, Caliper, Resistivity and Density (Enclosure 8). A detail scale of 1:20 was used over the two coal seams encountered. Chip samples were taken every 5 meters and several representative intervals were thin sectioned for detailed analysis. Descriptions of rotary cuttings, thin sections and binocular microscopic samples are included with this report (Enclosure 9). Location of the borehole was interpolated from airphoto coverage and the 1:5000 topographic map. Accuracy for the UTM coordinates is to within ± 5.0 meters and ± 2.0 meters for the elevation estimate.

BH85-1 COORDINATE DATA

Northing (m): 5471050 Easting (m): 674190 Elevation (m): 1565

2.3 Cost of Work Done, 1985


Total expenditure for 1985 work and report generation are \$20,497. A detailed summary of expenditures can be found in Enclosure 11.

3.0 GEOLOGY

3.1 Regional Geology

The Lillyburt Coal Prospect is located in the Flathead Valley graben structure as outlined in Price (1965). The property is bounded by the south-dipping Flathead normal fault to the north and east, and a north-dipping normal fault located in the Flathead River to the south (Enclosure 4). Westward, coal-bearing strata are confined by the Squaw Thrust. Strata to the north and south of the property consist of Cambrian to Pennsylvanian carbonates. Shales of the Jurassic Fernie Formation are dominant west of the Squaw Thrust. To the east, the Flathead normal fault separates the Kootenay strata from Precambrian Purcell lavas. However, this year's drilling results suggest a splay off the Flathead fault has interjected possible Pennsylvanian Rocky Mountain Formation strata between the above mentioned units.

Thrusting and associated folding are dominant structural features within the strata surrounding the Lillyburt prospect but are of minimum importance within the property. However, due to the influence of the Flathead normal fault, high angle normal faulting and strikeslip faulting at a local scale dominate the geology within the property (Enclosure 7).

GEOLOGICAL LEGEND

CRETACEOUS

Blairmore Group

JURASSIC - CRETACEOUS

Kootenay Group

JURASSIC

Fernie Formation

TRIASSIC

Spray River Group

PENNSYLVANIAN

Rocky Mountain Formation

MISSISSIPPIAN

Rundle Group + Banff Formation

DEVONIAN

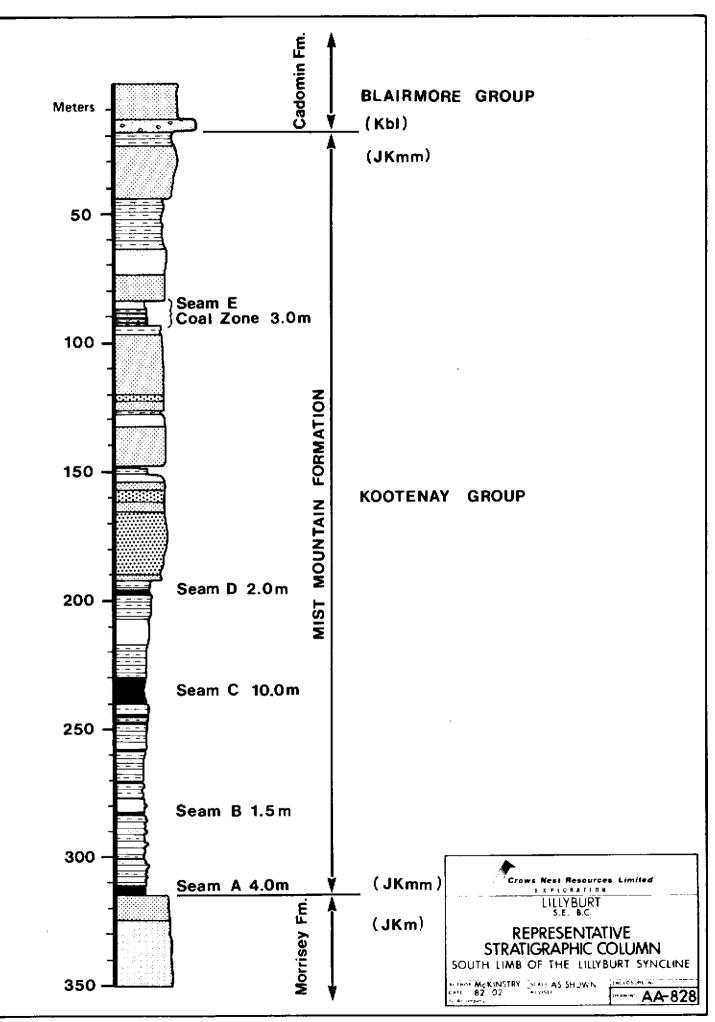
Palliser + Alexo Formations Fairholme Group

CAMBRIAN

Elko + Flathead Formations

PRECAMBRIAN

Purcell Group


- ... geological contact (approximate)
- thrust fault (approximate) teeth on upthrust side
- gravity fault (approximate) solid circle on downthrown side

FIG, Crows Nest Resources Limited EXPLORATION LILLYBURT S.E. BRITISH COLUMBIA GEOLOGICAL COMPILATION MAP 84: 3/7 ANTION MCKIPISTRY SCALE 1: 5017 CHICLOSURE NO DAY B2-102 HEVISED 85: 12 DRAWING NO AA-822

3.2 Geology of Coal Licence 5313

The stratigraphy of the Lillyburt Project has been extensively outlined by McKinstry (1981). Enclosure 5 details the main lithologic units which occur within the Jurassic - Cretaceous Kootenay Mist Mountain Formation. It was considered by McKinstry (1983) that the lower seams of this section could be traced eastward to the trenching sites of W. Schenfield on licence #5313.

Examination of the geophysical log profiles of borehole 85-1 suggest that correlation of 'B' seam, 'A' seam and a 5 meter sandstone unit between A and B can be achieved with log profiles from boreholes 301, 302, 212 and 213. This would strengthen the argument for extrapolation of Lillyburt geology along the south limb of the syncline eastward. However, evidence from chip samples and thin section material below A seam (Enclosure 9) (at approximately 72m in the hole) indicate a radical deviation in lithology from Kootenay strata. These chips have been very tentatively identified as representing Pennsylvanian Rocky Mountain dolomitic sandstones and dolomites based upon lithologic descriptions of Price (1965). It is suggested that a west dipping normal fault separates this strata from the overlying A seam and may be a splay from the Flathead normal fault system. Figure 6 reflects these revisions to previous geological interpretations. Figure 7, a cross-section through borehole 85-1 illustrates this interpretation. Dips for Kootenay strata were extrapolated from attitude information on the south limb of the syncline while dips for the Rocky Mountain Formation were interpolated from nearby surface mapping data.

.

ENCLOSURE 5

3.3 Structural Geology

McKinstry (1981) has indicated that Jurassic - Cretaceous Kootenay Group stratigraphy has been folded into a doubly plunging syncline at Lillyburt. Evidence from field mapping in 1981 and drilling in 1985 suggest the syncline is constrained on the east by the Flathead normal fault. Price (1965) suggested that the Flathead fault is dipping steeply west in this vicinity. In addition, Dowling (1914, p.51), Price (1965) and McKinstry (1981) have shown that the east-west extension of the Flathead fault at the south end of the Flathead and Taylor ranges dips approximately 60 degrees south. With this in mind, section A - A was constructed with the Flathead fault dipping west at 60 degrees. As previously discussed, evidence from borehole 85-1 suggests a fault beneath 'A' seam in the Mist Mountain Formation separating Kootenay Formation strata from possible Rocky Mountain Formation rocks. For lack of additional data, the orientation of this fault was constructed in the section to mimic the Flathead normal fault.

4.0 RESERVES

McKinstry (1980) outlined 24.8 million tonnes of 'in-situ' coal amenable to open pit mining methods with an overburden ratio of 3.8 cubic meters of rock per tonne of coal. This calculation did not reflect potential coal reserves east of licence 4084. Coal intersections in borehole 85-1 and seam correlation to borehole intersections to the west indicate further open-pit reserve potential within licences 7292 and 5313. However, it is felt further drilling is required to attain a reasonable estimate of this potential.

C2/dn.11

5.0 COAL QUALITY (BOREHOLE 85-1)

Two coal seams were intersected in borehole 85-1. The first seam (31.16-31.89m) is considered to be B seam in the Lillyburt section (see Enclosure 5). Examination of the rotary sample and subsequent analysis suggest considerable contamination of this seam during sampling. The 47.0% raw ash does not reflect the 'clean' pattern indicated on the density log. Dry mineral matter-free volatile matter content of 29.26% is somewhat higher than values for this seam further to the west. Results of the analyses for the sample from this seam are included with enclosure 8. CONFERENCE WAS SEEN REMOVED FROM REPORT

The second coal intersection (from 69.38 - 71.34m) is thought to be 'A' seam, at the base of the Mist Mountain Formation. Water pressures in the hole prevented sampling of this seam. In addition, caving conditions at both coal intersections almost certainly have enhanced apparent thicknesses of the seams on the density geophysical log.

6.0 RECOMMENDATIONS FOR FURTHER WORK

Further exploration work on these licences should consider the following: -

- a) Core drilling to further evaluate coal potential on licences 5313 and 7292.
- b) Hydrology studies throughout the property including installation of piezometers.

- 9 -

7.0 BIBLIOGRAPHY

Bethune, P. de, 1936. Un cas d'involution de nappes du second genre dans les Montagnes Rocheuses du Canada (geologie des environs du Flathead Townsite, Colombie Britannique): Memoires de L'Institut Geologique de l'Universite de Louvain, Tome X, p. 151-197.

D'Orsay, M., 1979. Geological Report on the Lillyburt Project, Coal Licence No's: 4080-4089 inclusive, Kootenay District, Map Reference 8267.

Dowling, D.B., 1914. Coal areas in the Flathead Valley, British Columbia. Geological Survey Canada, Summary Report, 1913.

Dowling, D.B., 1915. Coal Fields in British Columbia: Geological Survey of Canada, Memoir 69, 350p.

Gibson, D.W., 1977. Sedimentary facies in the Jura-Cretaceous Kootenay Formation, Crowsnest Pass area, southwestern Alberta and southeastern British Columbia: Bulletin of Canadian Petroleum Geology, v.25, p. 767-791.

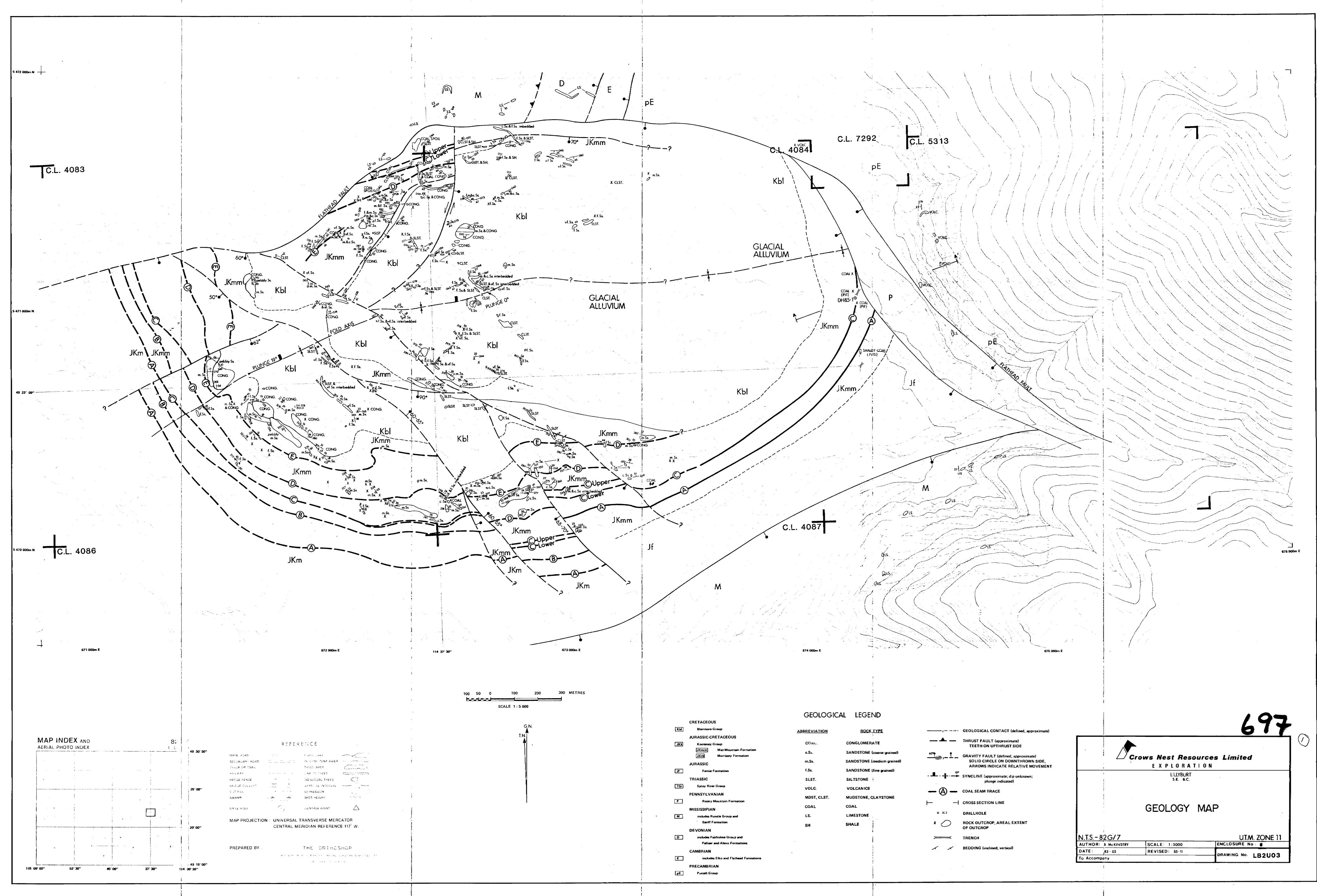
Gibson, D.W., 1979. The Morrissey and Mist Mountain Formations newly defined litho stratigraphic units of the Jura-Cretaceous Kootenay Group, Alberta and British Columbia. Bulletin of Canadian Petroleum Geology, v.27 p. 183-208.

Horne, J.C. and Ferm, J.C., 1978. Carboniferous depositional environments: eastern Kentucky and southern West Virginia; University of South Caroline, Dept. of Geology, Columbia, South Carolina. 151p.

McKenzie, J.D., 1916. Geology of a portion of the Flathead coal area, British Columbia: Geological Survey of Canada, Memoir 87, 53p.

McKinstry, B.W., 1980. Report on Coal Licences 4080 to 4089 inclusive, Kootenay Land District, British Colbumbia.

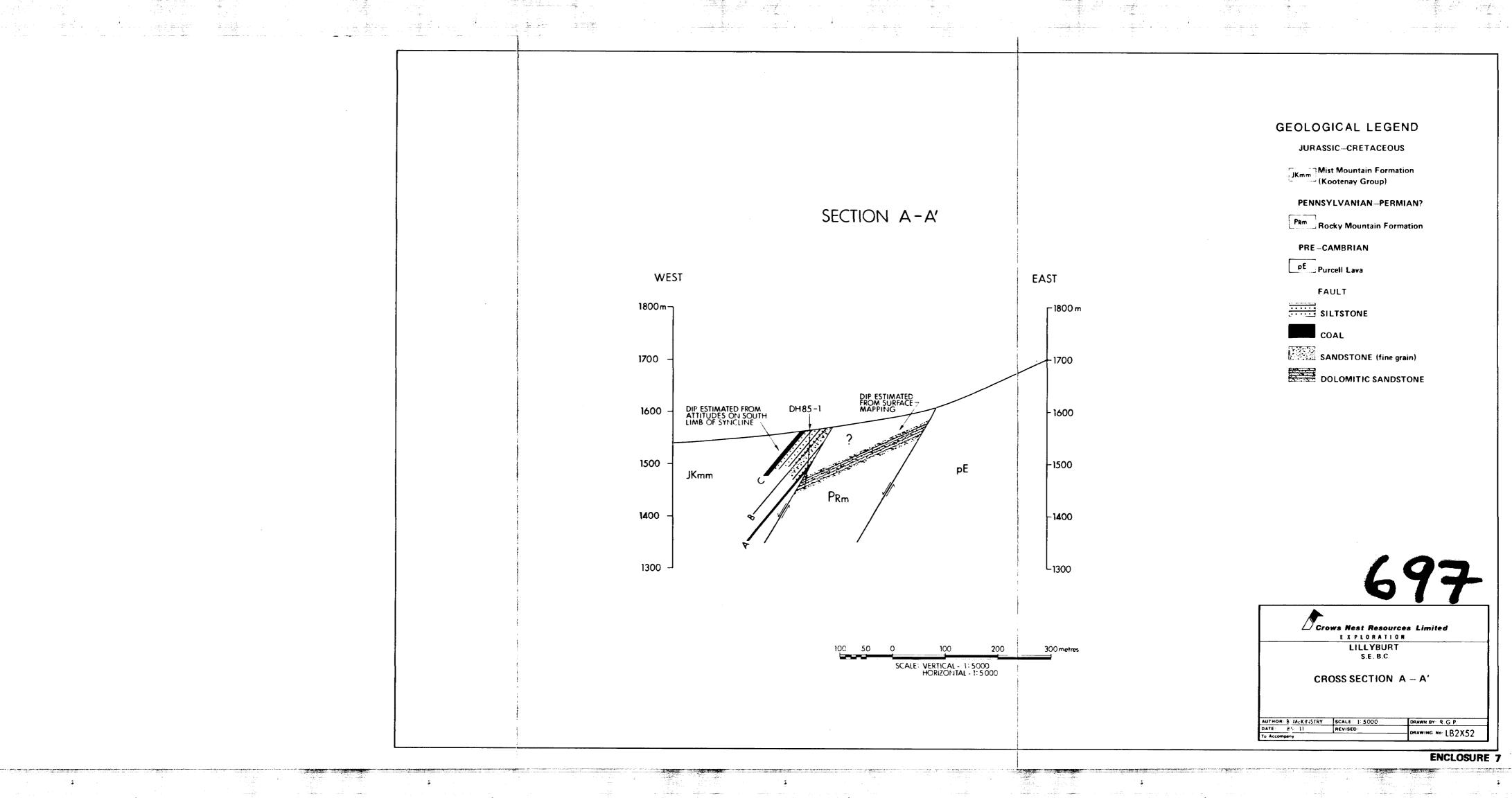
McKinstry, B.W., 1981. Report on Coal Licences 4080 to 4089 inclusive, Kootenay Land District, British Columbia.


McKinstry, B.W., 1982. Addendum Report on Coal Licences 4080 to 4089, 5313 and 7292, Kootenay Land District, British Columbia.

McMechan, R.D., 1981. Stratigraphy, sedimentology, structure and tectonic implications of the Oligocene Kishenehn Formation, Flathead Valley graben, southeastern British Columbia. Queen's University PhD dissertation, Kingston, Ontario. 327p.

Price, R.A., 1965. Flathead Map Area, British Colbumbia and Alberta, Geological Survey Canada Memoir 336. 221p.

Robertson, W.F., 1909. Report of the Ministry of Mines, British Columbia, p. 175.


Rose, B., 1918. Crowsnest and Flathead coal areas, British Columbia: Geological Survey of Canada, Summary Report 1917, Part C, p. 28C-35C.

.

	ABBREVIATION	ROCK TYPE	 ,	GEOLOGICAL CONTACT (defined, approximate)
	CONG.	CONGLOMERATE	▲	THRUST FAULT (approximate) TEETH ON UPTHRUST SIDE
Formation	c.Ss.	SANDSTONE (coarse grained)	60° 9 •	GRAVITY FAULT (defined, approximate)
	m.Ss.	SANDSTONE (medium grained)		SOLID CIRCLE ON DOWNTHROWN SIDE,
	f.Ss.	SANDSTONE (fine grained)	■ 10*	ARROWS INDICATE RELATIVE MOVEMENT
	SLST.	SILTSTONE	• -	SYNCLINE (approximate; dip unknown; plunge indicated)
	VOLC.	VOLCANICS	<u> </u>	COAL SEAM TRACE
	MDST, CLST.	MUDSTONE, CLAYSTONE	U	
ion	COAL	COAL	<u>⊢</u>	CROSS SECTION LINE
	LS.	LIMESTONE	0 3(2	DRILLHOLE
	SH	SHALE	* 🔿	ROCK OUTCROP, AREAL EXTENT OF OUTCROP
xd			<u> </u>	TRENCH
tions		5 4 1 1	XX	BEDDING (inclined, vertical)
ad Formations		i I I		

.. .- -- .

and a second	na an a				.			
		вс	REHOLE		DATI	E ·		
		85-1 (IN PIPE) 9-12-85						
			<u> </u>		FIELD OFFICE			
(-CGC) Tulsa, O	1	7920/M. STEACY CALGARY					[
		<u> </u>						
COMPANY		1						
CROWSNEST RES.			BE MODEL	9010	9830	96955	9999	
BOREHOLE		PRC	BE CIAMETER	1.07"	2.0"	1.87	1.4"	
85-1 (IN PIPE)	ELEVATION	41	DETECTOR TYPE		Nel		Na)	
AREA LILLYBURT		DETECTOR SIZE	.075° x 1.25° 1.59 x 10 ^{- 1}	1.125" x 4.5"	.875" x 4.0" .558 x 10 ⁻⁴	1.62 x 10 * 1		
	_ ≤	STD. DEADTIME	1/1.000		1.18 _{/Lsec}	ТДляс		
COUNTY	GAMMA	CALIE. MODEL LOC.	<u></u>					
	B.C.	8	CALIB DATE		-			
SECTION TOWNSHIP	RANGE	A	K-FACTOR x 10 **					
		NATURA	DEADTIME #1.990					
HOLE DAT	A N	TEST READING						
	<u> </u>	-11	WATER FACTOR		-			
TOTAL DEPTH - DRILLER : 115 M	^{16,8 cm}		CASING FACTOR					
	IG — TYPE & SIZE :	╶┝┤	DETECTOR TYPE		Nei		Nat	{
	IG DEPTH <u>6</u> М		DETECTOR SIZE		5° x 1.5°		.5 x 1.0	
		-	SOURCE TYPE		Ça ¹²⁷	-	(e'B	
LOGGING SPEED : 12 M/MIN BORE	<u></u>	<u> </u>	SQUIRCE NO.	1]
REFERENCE LEVEL : GROUND FLUID	RESISTIVITY : @ 'F	DENSIT	SOURCE STRENGTH SOURCE SPACING	—				
	SOFTWARE LEVEL 8,2 *A							
SCALE								
			DETECTOR TYPE			Har		
REMARKS:			DETECTOR SIZE			1.0° x 6.0°		
			SOURCE TYPE		—	AmBé		
	·····	NEUTRON	SOURCE NO.	· <u> </u>		<u>1 Ci</u>		
		_ <u>15</u>	SOURCE STRENGTH		L	71-1-24		
		ž	CAL STD			<u>45.7 с</u> п 152		
			CAL STD			140		
		_				170		
		SN	GL PT RESISTANCE	14°D a 25°L		14"D 1 25"L	1.1"0 ± 2.5"1	
		RE	SISTIMITY		8" FOCUSED			
			LE POTENTIAL	YES		YES	YES	
	·····		MPERATURE			YES		
·			WATION	<u> </u>		NO / YES		
		1.0		<u> ··</u>	res			├ ────┤
L				i	l		CT-112	REV, 2/11/80

+:

897

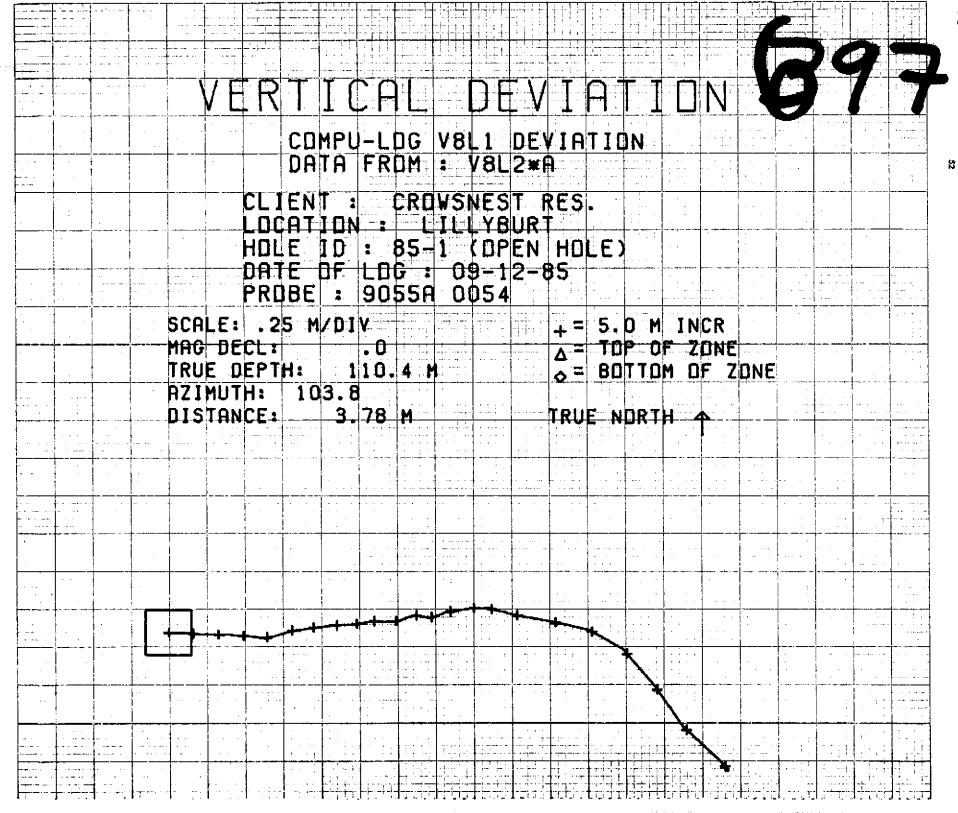
化化材料理论 网络中国经济加强计 机用于处理公司计划和

A A A A A A A A ALERTICAL DEPENDING A A A A A A A A A

CONTROLLOG VOLUMENTATION

CLIENT : CROUSNEST RES.

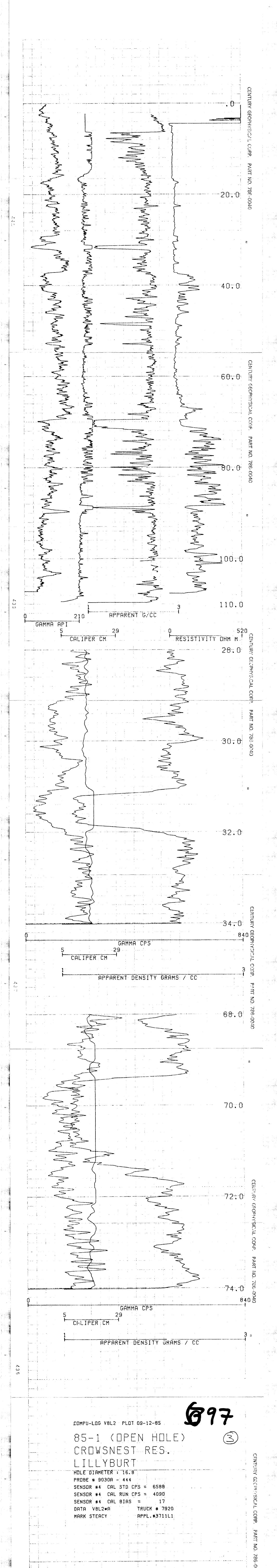
LOCATION : LILLYBURY

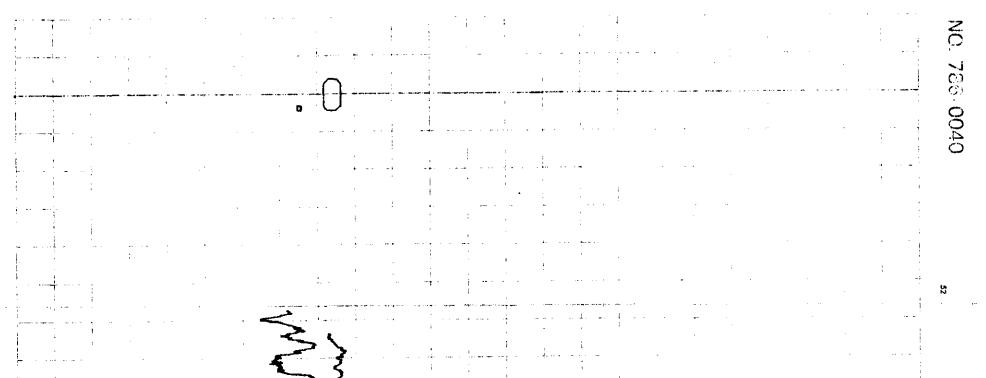

THAT IN : CONTRACTOR

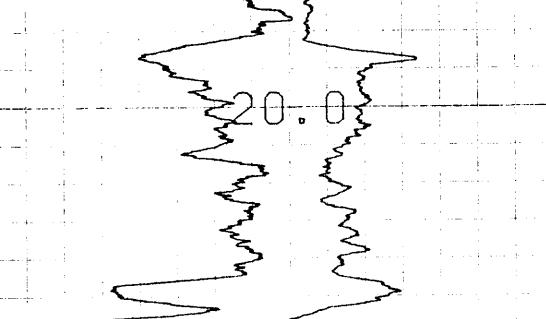
DATA FROM : VOL2XA

1601 0F 100 : 57 15 05 1600E : 70556 0054

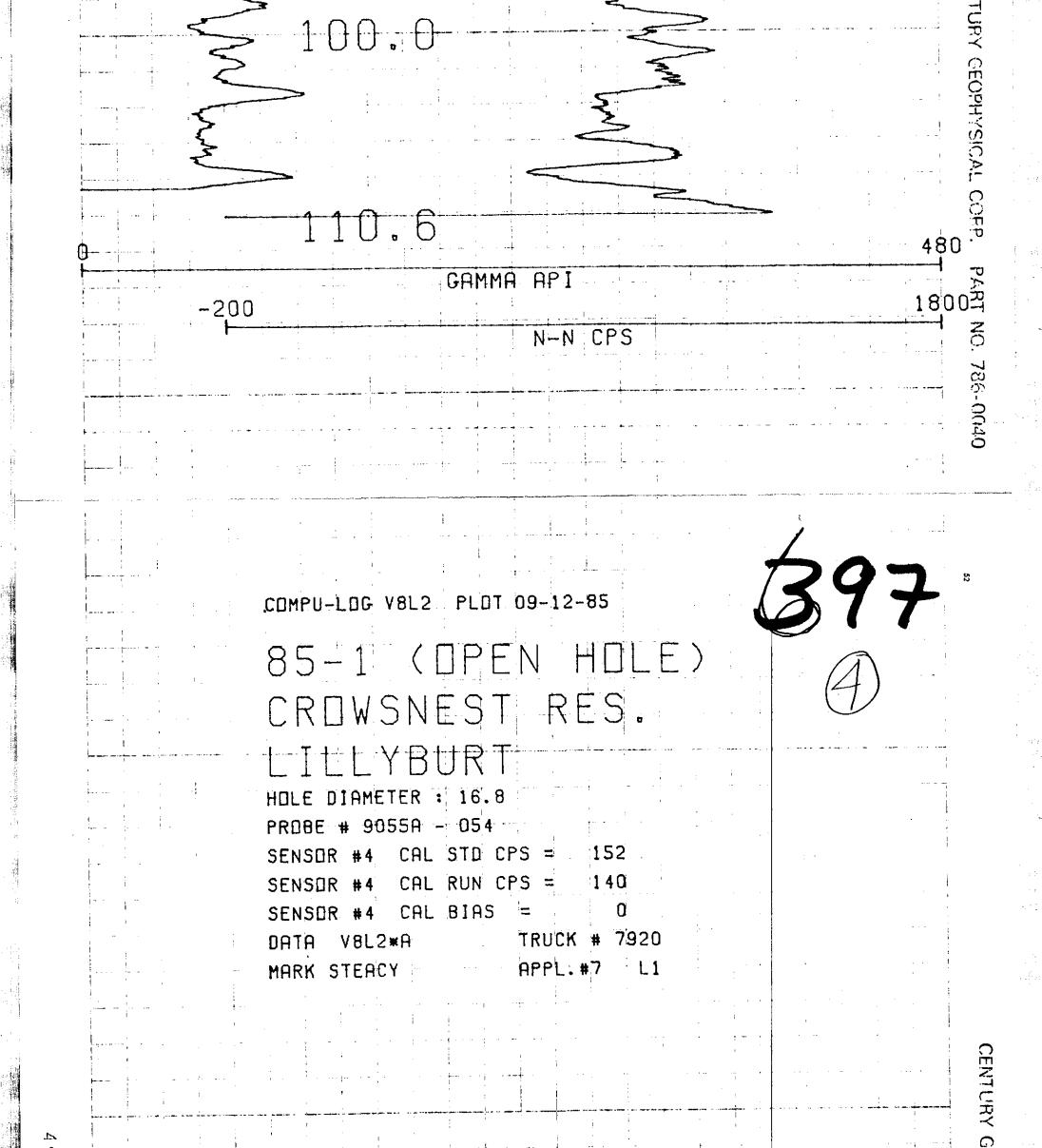
TD = TOTAL DEFTERT = TOP OF ZONED = DOTTOM OF ZONE


DEFAIL	TRUE DEFTH	NORTH DEV	EAST DEV	D) STANCE	AZIMUHH	En Al	<u>C</u> .411
, ()()	. 00	. (M)	, ()()	• OO	. О	. (j. 1	
5.00	れいかり	() ()	2 B G	. 14		1.0	····
10.00	7.92	- 01	.33	2017 1. (1977)	72.5	1.0	1. A. A. A.
15.00	14.99	_ C\ <u>C</u> r	. 40	. 44	1221. 4	1.((
20.00	19,78	.03	, <u>10</u>	, CS -	92:0	1.0	$\nabla_{\mathcal{F}} = \nabla$
25.00	24,96:	.01	. 81	. 03	8:0. V	1.9	73.6
30.00	20.50	$\sim C^{1/2}$	2 142 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. (20)	80. 8	1 6.	Ł _ Ü:
35.00		. 05	1.10	1.10		1.5	1 () ()
4 •.••	39.72	$\sim 10 M_{\odot}$		1.23	(a 1	i.4	$C \in \mathcal{L}$
45.00	44.77	, OE	1.35	1.25	\mathbf{D} (\mathbf{C}, \mathbf{C})	1.3	86.0
50.00	49.97	. () <u>5</u> } .	1.47	1.11	8K. C	1.00	(2,2,3)
55.00	54,97	. 111	i cial	1.43	85.8	1.6	74.3
40. 00	522.02	. ‡ 0	1.72	1.73	84.4	1 > 1	76.3
65.00	64.26	. 1.4	1, 00	1.00	(0,0)	1 . A	11.3
70.00	69,86	.17	(2, 6)	2.Of	885. Z	3?	C entral Re
75.00	2/1.02	. 16	2.12	2.32	054.5	1. 7	V., 1. C.
80,0 0	79.75	. 19	2.20	1. 1. 1. 1. 1.	6 0 . 0	3 - 17	104.1
Q5, 00	()/)()(5)	.02	1. T.A	1.54	名 使有,为	$2 \cdot t$	10001
70.00		, 01	2 - 2 (3)	12	(* 1) (* 1)) 0 4. ∠
95.00	54.03	20 - 17 - 17 - 17 - 17 - 17 - 17 - 17 - 1	2×62	S. 01	an an taon an t	3.1	12.2.1
100.00		. 27		tine and the second	12 C. J. C.		140.4
105.00	104.91	. 4.7	≈ 40	0.46	(00),, .		140.00
110.00	100.00	- . (37	3. (55)	3. P.	103.4	3., C	133.2
110.5C	110.40	. 90		7,70	103.8	4.2	151.4




403

¥0


CENTURY GEOF

CENTURY GEOPHYSICAL CORP. m PART NO. 786-C040 when when a က W CEN

Report on the Sealing of drillholes

Inspection District FERNIE B.C. Date of Report 04//0_ Commany CROWS NEDT RESCURCES Land District Kontenby yal hny Namber Licence Number 5313 1. Number of Drillhole. 1885-/ 1. Surface elevation. 1565 M. 3. Type (Vertical, diamond, rotary, size etc. ROTARY - VERTICAL Drilled by: Name of Contractor Wistern Hydre - Ark Name of Exploration Company CROWS MEST RESURCES Date of completion. $\frac{2}{09}/85$. 5. 6. Date of Sealing 12/09/85 + 04/10/ 7. Sealed by: Name of Contractor WESTERN HYDRO-AIR & GAB SHOTHOL'E CEMENTERS Name of Exploration Company chaus MEST RES: (a) Has any casing, drill pipe, drill bits, core barrel, etc. been left in 8. the hole? YES (b) If so, give details and location. 3M OF 14SING AT TOP OF HOLE (a) Was the drillhole sealed in the manner outlined in the Chief Inspectors Instructions? <u>VES</u> If No, give reasons and details of variation. **(b)** (e) Was the sealing effective? <u>168</u> 10. (b) Details of any tests carried out. AN 11. I cartify that the above drillhole has been effectively sealed in accordance with the instructions of the Chief Inspector of Mines. Mush

Man Signature ____ Designation (RAWS MEST RESOURCES Date 04/10/85 Countersignature Designation Av B. Shetile Comitica Date____ (ict 1/85-

ENCLOSURE 10

Province of British Columbia Ministry of Energy, Mines and Petroleum Resources

APPLICATION TO EXTEND TERM OF LICENCE

,

1. Henn C. Proudtot	agent tor Shell Ca	node Resources himited
(same)	• <u>Po.</u> B	× 100 (Addrees)
(Address)		(Address)
		407 568
handha annta an aba blinistas do nasand	the term of Coal Licence(s) No(s). 40	
for a further period of one year.		
2. Property name hilly trust. Proje	et(617041p.No243.)	•••••
3. I am allowing the following Coal Licen	ce(s) No(s), to forfeit 4080., 49	81., 4088. 9. 4089
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
4. I have performed, or caused to be performed,		
October 5	\ldots , 19 85 , , work to the value of	f at least \$. 20, 497 - 00
on the location of coal licence(s) as fol	lows:	
CATEGORY OF WORK	Licence(s) No(s).	Apportioned Cost
Geological mapping		
Surveys: Geophysical		
Geochemical		
Other		····
Road construction	5313	848 .°°
Surface work	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
Underground work		·····
Dritting	533	(2,006-25
Logging, sampling, and testing	5313	5,100.25
Reclamation		• • • • • • • • • • • • • • • • • • • •
Other work (specify)	••••••	#2,54Z.50
Off-property costs		•
5. I wish to apply \$ 16,542.**		
\$3955. of this value.	uf. work on Coul hitera	e. No. 7292
6. I wish to pay cash in lieu of work in th	e amount of \$	on Coal Licence(s) No(s).
•••••••••••••••••••••••••••••••••••••••		
7. The work performed on the location(s) is detailed in the attached report entitle Goersy Mores +	o hillyburt hoject, 1985 m. Resources
• • • • • • • • • • • • • • • • • • • •		
~	0	
December 9,19		(Signature)
		Wisor Land

(FORMS AND REPORT TO BE SUBMITTED IN DUPLICATE)

. .	Arma (H	tertaraa)		1	les la			Du	
Reconnectors									
Reconnaissance		••••••	••••	••••		• • • •	•••••		
Detail: Surface		•••••	••• •••	• • • • •		• • • • •		•••••	
Underground		• • • • • • • • •			• • • •	••••	• • • • •		
Other* (specify)		•••••	• • • • • • • • •	• • • • •		Total C			
							ANEL (†	• • • • • •	
GEOPHYSICAL/GEOCI	HEMICAL SURVEYS	5	Yes			No	c⁄		
Method									
Grid									
Topographic									
Other (specify)									
Column (Moncrish)						Total C			
				1					
ROAD CONSTRUCTIO			Yes	μ.		No	0		
Length	30 merres		Width		D.	. inc	hes		
On Licence(s) No.(1)		533							
Access to DELL									
						Total C	ion \$.E	48 🕾	• • • • • •
				~			~		
SURFACE WORK			Yes			No	Ø		
	Longth	•	***			Di Di	p th		Cort
Trenching									
Seam Tracing									
Crosscutting							•••••		
Other" (specify)									
							Total Co	st \$	
				_		•••	RY .		
UNDERGROUND WO	RK		Yes			No			
	No, et Adits M	lasimum Ler	ngth No	. of Ho	les.	T	osel Metree		Ceet
Test Adits							. .		
Other workings*							. . .		
							Totel	Cost \$.	
							_		
DRILLING			Yes	-		No			
DRILLING	Hole Siz		Yes No. el Ho	-			Metres.		Cont
Core: Diamond	Hole Siz		• ••	-			_		Çant
	Hoin Siz		• ••	-			Metris.	·	-
Core: Diamond Wireline Rotary: Conventional	· · · · · · · · · · · · · · · · · · ·		No. el Ho			Total	Metres		
Core: Diamond Wireline Rotary: Conventional Reverse circula	nion 5. mcf	· · · · · · · · · · · · · · · · · · ·	No. el Ho			Total	Metres	.	17,00
Core: Diamond Wireline Rotary: Conventional Reverse circula Other* (specify)	nion	· · · · · · · · · · · · · · · · · · ·	No. el He	×	· · · · ·	Total 	Metres.		
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor WESTE	ntion	A/R (No. of He 	л Э	· · · · ·	Τοτσι 	Martres.	· · · · · ·	17,00
Core: Diamond Wireline Rotary: Conventional Reverse circula Other* (specify)	ntion	A/R (No. of He 	л Э	· · · · ·	Τοτσι 	Metras.		(7, 40
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor WESTE	ntion	A/R (No. of He 	л Э	· · · · ·	Τοτσι 	Metras.		17,00
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor WESTE	nion 5 mcf ERN HYDRO	A/R (No. of He 	л Э	· · · · ·	Τοτσι 	Metras.		(7, 40
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor MESTE Where is the core stored LOGGING, SAMPLING	nion	A/R (No. et No 1 <i>EALSTA</i> RS)	· · · · ·	Total	Total Co		(7, 40
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor JJESTE Where is the core stored LOGGING, \$AMPLING Lithology:	nion 5 mcf ERN HYDRO	A/R (No. et Ho J. <i>FAL-5</i> 7ARJ			Total	Total Co		(7,006;
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor UESTE Where is the core stored LOGGING, \$AMPLINE Lithology: Logs:	tion 5 Act RN HYDRO II NA G, AND TESTING Drill samples Gamma-neutron	аля(Аля(В	No. et Ho J <i>FAI-S</i> TARJ Ves Core sar Density			Tots:	Merren Total Co D Bulk s	st \$. J7	(7 ,006;
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor WESTE Where is the core stored LOGGING, \$AMPLINE Lithology: Logs: Other" (specify)	ntion 5 Jack ERN HYDRD I7 N/A G, AND TESTING Drill samples Gamma-neutron	A/R . (No. et Ho J. FAI-FAR J Core sar Density		D S	Tots:	Metres Metres Tatal Co D Bulk s	st \$. J7	(? , 006; Z, 006;
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor UESTE Where is the core stored LOGGING, \$AMPLINE Lithology: Logs:	ntion 5 Act RN HYDRP 4 RN NYDRP 4 R G, AND TESTING Drill samples Gamma-neutron Proximate analysis	А/R (. В'	No. el Ho FAI-FTA R J Ves Core sar Density FSI		D D	Tots:	Metres Metres Tatal Co (1) Bulk (st \$ J7	(2 ,006;
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor WESTE Where is the core stored LOGGING, \$AMPLINE Lithology: Logs: Other" (specify)	ntion 5 Jack ERN HYDRD I7 N/A G, AND TESTING Drill samples Gamma-neutron	A/R . (No. et Ho J. FAI-FAR J Core sar Density		D S	Tots:	Metres Metres Tatal Co D Bulk s	st \$ J7	(? , 006; Z, 006;
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor WESTE Where is the core stored LOGGING, \$AMPLINE Lithology: Logs: Other" (specify)	tion 5 Jack RN HYDRD 11 R, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization	A/R . (No. el Ho FAI-FTA R J Ves Core sar Density FSI	mphic	0 5⁄	Total 	Metres Total Co D Bulk s Plastic	st \$. Ji amples ibility	(2 ,006):
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) ContractorWESTE Where is the core stored LOGGING, \$AMPLINE Lithology: Logs: Other" (specify) Testing:	tion 5 Jack RN HYDRD 11 R, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization	A/R . (No. of Ho No. of Ho <i>FAI-GTA</i> R i Ves Core sar Density FSI Petrogra	mphic	0 5⁄	Total 	Metres Total Co D Bulk s Plastic	st \$. Ji amples ibility	(2 ,006;
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor	tion 5 Jack RN HYDRD 11 R, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization	A/R . (No. et Ho No. et Ho <i>FAI-G</i> (A) R J Ves Core sar Density FSI Petrogra	and a second sec	0 5⁄	Tossi 	Metres Total Co D Bulk t Washa Plastie Total C	st \$. Ji amples ibility	(2 ,006):
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor	Ation 5 Act FRN 4 YDRP 4 I7 ALA G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization	A/R (No. el Ho FAI-FTA R J Ves Core sar Density FSI Petrogra	mples	0 8 9	Τομι 	Meron Meron Total Co D Bulk s Plastic Total C	amples ability city	(2,006) Z,006) D S/(00)?
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor	Ation 5 Act FRN 4 YDRP 4 I7 ALA G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization	A/R (No. el Ho FAI-FTA R J Ves Core sar Density FSI Petrogra	mples	0 8 9	Τομι 	Meron Meron Total Co D Bulk s Plastic Total C	amples ability city	(2,006) Z,006) D S/(00)?
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor	Ation 5 Jock ERN HYDRD II AM G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization Amed Jn. 1986. R. Bot	A/R (No. el Ho FAI-FTA R J Ves Core sar Density FSI Petrogra	mples	0 8 9	Τομι 	Metres Metres Total Co D Bulk 1 Plastic Total C D Total C	amples ability city	(2,006) Z,006) D S/(00)?
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor	Ation 5 Jock ERN HYDRD II AM G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization Amed Jn. 1986. R. Bot	A/R (No. el Ho No. el Ho FAI-FIAR Core san Density FSI Petrogra Yes ArscussiPri A. O'Brie Yes	aphic	0 8 0	Τοτρι 	Merren Total Co D Bulk : Vasha Plastic Total C C Total C Sor	amples bility city	(? , 006 : D S(00) ?
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor	Ation 5 Jock ERN HYDRO 17 N/A G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization Anned Jn. 1986. R. Box ity details	A/R (No. el Ho No. el Ho J CAL-GAR Ves Core sar Density FSI Petrogra Yes A. O.Brie Yes	aphic	0 8 0 0	Τοτρι 	Metres Metres Total Co D Bulk a Plastik Total C D Total C Sar	amples bility fit \$. 17	(2 ,006) Z ,006; D S (100); 2 Com
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor	Ation 5 Jock ERN HYDRO 17 N/A G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization Anned Jn. 1986. R. Box ity details	A/R (No. el Ho No. el Ho FAI-FIAR Core san Density FSI Petrogra Yes ArscussiPri A. O'Brie Yes	aphic	0 8 0 0	Τοτρι 	Metres Metres Total Co D Bulk t Bulk t Plastic Total C D Total C	amples bility ity	(2 ,006) Z ,006; D S (100); 2 Com
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor	Ation 5 Act FRN HYDRO IT ALA G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization Amed An. 1986 R. Bo Ify details	A/R (No. el Ho No. el Ho <i>FAI-51A</i> R J Ves Core sar Density FSI Petrogra Yes CirscussiPn A. O'Brie Yes	mples	0 8 0 0	Τοτρι 	Metres Metres Total Co D Bulk t Plastic Total C Sof Total C	amples bility ity	(? ,006) Z ,006) D S /(00); ?
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor MESTE Where is the core stored LOGGING, SAMPLINI Lithology: Logs: Other" (specify) Testing: Other" (specify) RECLAMATION Details To. be OTHER WORK (Speci 	Ation 5 Jock ERN HYDRO 17 Ata G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization Anned In 1986. R Box ity details	A/R (No. of Ho No. of Ho <i>FAL-STA</i> R. J Ves Core sar Density FSI Petrogra Yes A. O'Brie Yes		С ЗУ С	Τοτρι 	Metres Metres Total Co D Bulk 1 Bulk 1 Plastic Total C G G Total C	amples bility ity ost \$	(2,006) Z,006) D S(100) Z
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor MESTE Where is the core stored LOGGING, SAMPLINI Lithology: Logs: Other" (specify) Testing: Other" (specify) RECLAMATION Details To. be OTHER WORK (Speci 	Ation 5 Jock ERN HYDRO 17 Ata G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization Anned In 1986. R Box ity details	A/R (No. of Ho No. of Ho <i>FAL-STA</i> R. J Ves Core sar Density FSI Petrogra Yes A. O'Brie Yes		С ЗУ С	Τοτρι 	Metres Metres Total Co D Bulk 1 Bulk 1 Plastic Total C G G Total C	amples bility ity ost \$	(2,006) Z,006) D S(100) Z
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor	Ation 5 Jock ERN HYDRO 17 Ata G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization Anned In 1986. R Box ity details	A/R (No. of Ho No. of Ho <i>FAL-STA</i> R. J Ves Core sar Density FSI Petrogra Yes A. O'Brie Yes		С С С	Total 	Meron Meron Total Co D Bulk s Plastic Total C G Total C G Total C C Total C	amples bility cost \$ cost \$ cost \$	(2,006) 2,006) 0 5/00) 5/00) 2 5/00) 2 5/00) 2 5/00) 2 5/000 2 5/000 2 5/000 2 2 2 2 2 2 2 2 2 2 2 2 2
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor MESTE Where is the core stored LOGGING, SAMPLINI Lithology: Logs: Other" (specify) Testing: Other" (specify) RECLAMATION Details To. be OTHER WORK (Speci 	Ation 5 Jock ERN HYDRO 17 Ata G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization Anned In 1986. R Box ity details	A/R (No. of Ho No. of Ho <i>FAL-STA</i> R. J Ves Core sar Density FSI Petrogra Yes A. O'Brie Yes		С С С	Total 	Meron Meron Total Co D Bulk s Plastic Total C G Total C G Total C C Total C	amples bility cost \$ cost \$ cost \$	(2,006) Z,006) D S(100) Z
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor MESTE Where is the core stored LOGGING, SAMPLINI Lithology: Logs: Other" (specify) Testing: Other" (specify) RECLAMATION Details To. be OTHER WORK (Speci 	Ation 5 Jock ERN HYDRO 17 Ata G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization Anned In 1986. R Box ity details	A/R (No. of Ho No. of Ho <i>FAL-STA</i> R. J Ves Core sar Density FSI Petrogra Yes A. O'Brie Yes		С С С	Total 	Meron Meron Total Co D Bulk s Plastic Total C G Total C G Total C C Total C	amples bility cost \$ cost \$ cost \$	(2,006) 2,006) 0 5/00) 5/00) 2 5/00) 2 5/00) 2 5/00) 2 5/000 2 5/000 2 5/000 2 2 2 2 2 2 2 2 2 2 2 2 2
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor	Anno S. Jock In Ary DRD ANA G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization Annod An. 1986. R. Box ity details STS R. FPOIZT	A/R	No. of Ho No. of Ho FAL-GARS Ves Core sar Density FSI Petrogra A. O'Brite Yes Yes Yes Yes		С ЗУ С	Τοτσι 	Meron Meron Total Co D Bulk s Plastic Total C G Total C G Total C C Total C	amples bility cost \$ cost \$ cost \$	(2,006) Z,006) Com S(100) 2542.5 20,497
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor	Ation 5 Jock ERN HYDRO 17 Ata G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization Anned In 1986. R Box ity details	A/R	No. of Ho No. of Ho FAL-GARS Ves Core sar Density FSI Petrogra A. O'Brite Yes Yes Yes Yes		С ЗУ С	Τοτσι 	Meron Meron Total Co D Bulk s Plastic Total C G Total C G Total C C Total C	amples bility cost \$ cost \$ cost \$	(2,006) 2,006) 0 5/00) 5/00) 2 5/00) 2 5/00) 2 5/00) 2 5/000 2 5/000 2 5/000 2 2 2 2 2 2 2 2 2 2 2 2 2
Core: Diamond Wireline Rotary: Conventional Reverse circula Other" (specify) Contractor	Anno S. Jock In Ary DRD ANA G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization Annod An. 1986. R. Box ity details STS R. FPOIZT	A/R	No. of Ho No. of Ho FAL-GARS Ves Core sar Density FSI Petrogra A. O'Brite Yes Yes Yes Yes		С ЗУ С	Τοτσι 	Meron Meron Total Co D Bulk s Plastic Total C G Total C G Total C C Total C	amples bility cost \$ cost \$ cost \$	(2,006) Z,006) Com S(100) 2542.5 20,497

"A full explanation of other work is to be included

K-SHELL LSULYBURT 85A CONFIDENTIAL COAL ANALYSIS

	G LAB		I <mark>ES LTD.</mark> ING	COMP/ ATTER PROJE	NTION	CROWSNEST RESOURCES LTD. B. McKinstry			FILE NO. DATE PAGE 1	2792(0cto 0f	ober 7, 1985	
SAMPLE NUMBER	SAMPLE TYPE	OVERY FLOAT	BASIS OF ANALYSIS	REC'D % H ₂ O	% Н ₂ О	% V.M.	% ASH	% F.C.	% S	Kcal/kg	F.S.I	NOTES
85-1 #1 32.0-32.5	Raw Coal -1.60 Flt	47.13	As Received Air Dried Dry Basis Air Dried Dry Bais	7.88	.92 - .98 -	- 25.66 25.91	47.04 50.59 51.06 14.79 14.94		.72 .73	6,897 6,965	1	

CN 24019