

April 28, 1997

Mr. F. W. Hermann, P.Eng. Chief Inspector of Mines Ministry of Employment and Investment PO Box 9323 Station Provincial Government Victoria, BC V8W 9N3

Dear Mr. Hermann:

Re: T'Sable River Bulk Sampling Your File No. 18050-03/T'Sable

Enclosed herewith please find the draft application for the underground bulk sampling, which is an integral part of the T'Sable River Coal project exploration program. In preparing the application, we have followed the requirements of the Health, Safety and Reclamation Code for Mines in British Columbia as well as the draft Application Requirements for a Permit, published in December 1995.

The bulk sampling program will be managed by qualified personnel of Hillsborough Resources Limited, who is the majority shareholder and manager of the T'Sable River Coal Corporation.

We would appreciate your early comments and suggestions so that we can include them in the application, in order to expedite this important project.

Yours very truly,

includ

Dennis Mraz, P.Eng. Acting C.O.O.

cc: G. Vooro J. Tatak

Executive Office: #750-890 West Pender Street, Vancouver, British Columbia V6C 1J9 • Phone (604) 684-9288 • Fax (604) 684-3178

1.01

.

PAGE NO.

TABLE OF CONTENTS

,

COVERING LET	TER
SECTION 1. INT	RODUCTION 1-1
SECTION 2	BASELINE INFORMATION 2.1
2.1 2.3 2.4	Climate2-1Geology and Description of Deposit2-1Water Quality2-22.4.1Surface Water2-22.4.2Groundwater2-4
2.5	Fisheries and Aquatic Resources 2-4 2.5.1 Watercourses in the Area 2-4 2.5.2 Baynes Sound 2-5
2.6	Surface Geology, Terrain and Soils Mapping 2-5 2.6.1 General 2-5 2.6.1 Surficial Geology and Terrain Mapping 2-6 2.6.3 Soil Survey and Soil Capability Mapping 2-7 2.6.4 Discussion 2-8
2.7 2.8 2.9	Vegetation and Wildlife2-8Land Status and Use2-9Land Capablity2-10
SECTION 3.	MINE PLAN
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Mine Plan Overview3-1Development Schedule3-2Surface & U/G Development3-3Access & Transportation3-6Processing Plant3-7Waste Rock and Topsoil Storage3-8Additional Minesite Infrastructure3-9Domestic Water3-10Water Management3-10Geotechnical Assessment3-11

TABLE OF CONTENTS (cont'd)

,

0

.

PAGE NO.

SECTION	4.	GEOLOGY	4-1
	4.1	Summary	
	4.2	Previous Work	
	4.3	Current Investigations	
	4.4	Geologic Setting	
	4.5	Stratigraphy	
	4.6	Drillhole Stratigraphy	4-10
	4.7	Description of the Coal Seams	4-13
	4.8	Structure	4-27
	4.9	Groundwater Regime	
	4.10	Methane Testwork	4-31
SECTION	15.	RECLAMATION PROGRAM	5-1
	5.1	Soil Handling Plan	
	5.2	Soil Replacement Strategy	
	5.3	Acid Rock Drainage	
	5.4	Conceptual Final Reclamation Plan	
	5.5	Productivity Objectives	
	5.6	Long Term Stability	
	5.7	Waste Dump Reclamation	
	5.8	Settling Pond	
	5. 9	Sealing of Underground Workings	
	5.10	Road Reclamation	
	5.11	Disposal of Toxic Chemicals	
	5.12	Reclamation Cost Estimate	
	5.13	Final Reclamation and Closure Sequence	5-9

LIST OF FIGURES & ILLUSTRATIONS

SECTION 1.

-GENERAL LOCATION MAP

- BULK SAMPLE LOCATION MAP

-97-D-079 : COAL RIGHTS TENURE

-97-D-034: SURFACE RIGHTS TENURE

SECTION 2.

-FIG. 2-1: BULK SAMPLE LOCATION

-FIG. 2.2: BULK SAMPLE SITE PLAN

-FIG. 2.3: SURFACE WATER BASELINE SAMPLING LOCATIONS

-FIG. 2.4: STREAM CLASSIFICATION OF BULK SAMPLE AREA

-FIG. 2.5: PRELIMINARY SURFICIAL GEOLOGY OF BULK SAMPLE AREA

-FIG. 2.6: PRELIMINARY TERRAIN MAPPING OF BULK SAMPLE AREA

-FIG. 2.7: PRELIMINARY SOILS AND LANDFORM MAPPING OF BULK SAMPLE AREA

SECTION 3.

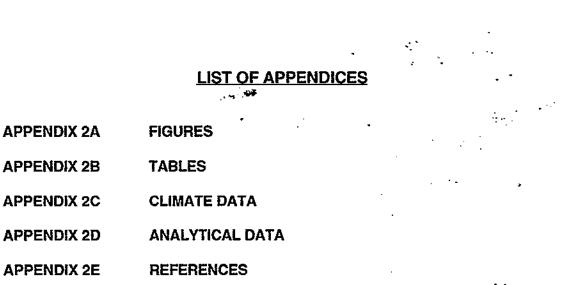
-97-D-075: PROPOSED SURFACE INSTALLATIONS -97-D-076: PROPOSED MINE PLAN -97-D-077: PROPOSED VENTILATION PLAN -97-B-072: SECTION PROFILE: A ROAD DECLINE -97-B-057 TO 060 INCH.: GEOLOGIC CROSS-SECTIONS -97-A-041: PROPOSED PORTAL EXCAVATION -97-B070/071: SINGLE LINE ELECTRIC DIAGRAMS -97-B-073: PARTIAL DEPILLARING SEQUENCE -97-A-040: ROOF SUPPORT RULES

SECTION 4.

-97-D-074: LOCATION OF DRILLHOLES -FIG. 4.3.1: TABULATION OF DRILLHOLES -FIG. 4.6.1: STRATIGRAPHIC SEPARATION -FIG. 4.6.1: STRATIGRAPHIC CORRELATION -FIG. 4.7.1: NO. 1 SEAM AVERAGE THICKNESS -FIG. 4.7.2 TO 4.7.5 INCH.: NO. 1 SEAM INTERVALS -FIG. 4.7.6: NO. 3 SEAM INTERVAL -FIG. 4.7.7: DISTRIBUTION OF NO. 3 SEAM -FIG. 4.7.8: DISTRIBUTION OF NO. 4 SEAM -CORELOG DESCRIPTIONS, HOLES 05,06,10,16 & 25

SECTION 5.

- 97-A-044: SITE RECLAMATION


- REFER TO SECTION 2 AND SECTION 3.

LIST OF TABLES

TABLE 2-1 SUMMARY OF APPLICABLE WATER QUALITY CRITERIA

TABLE 2-2 SUMMARY OF WATER QUALITY DATA

. . .

TSABLE RIVER COAL CORPORATION

APPLICATION FOR BULK SAMPLE PROGRAM

AT THE TSABLE RIVER COAL PROPERTY

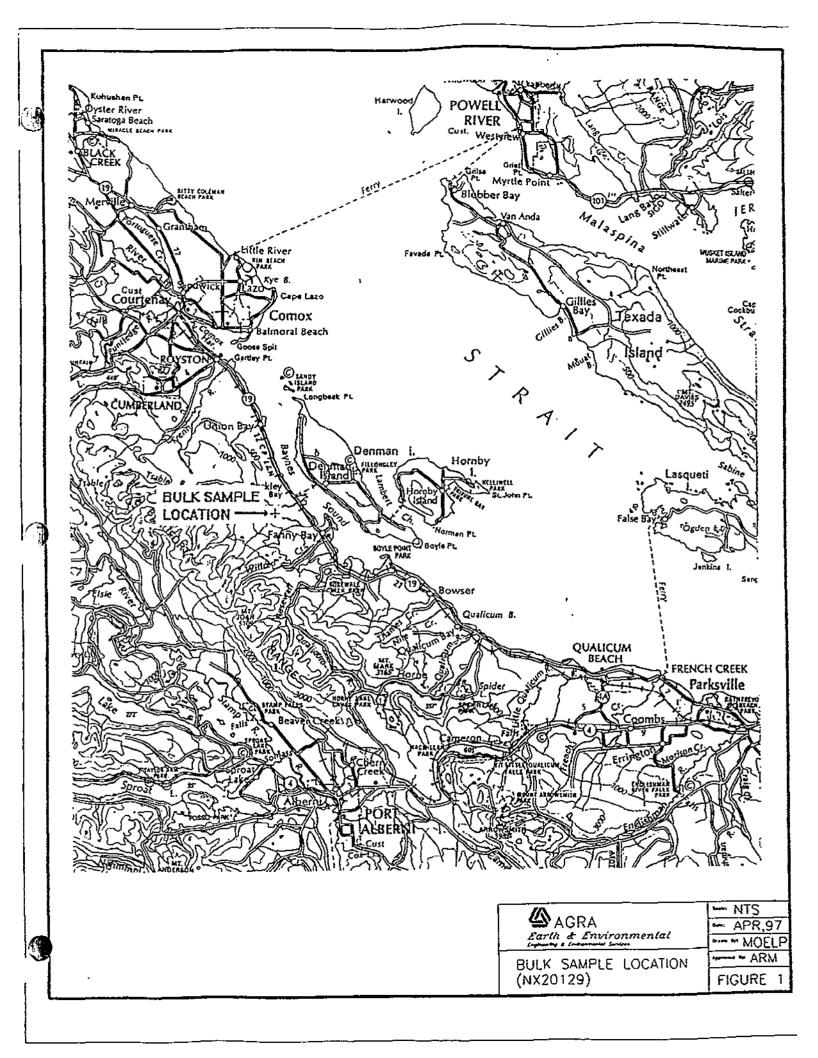
NEWCASTLE and NELSON LAND DISTRICT

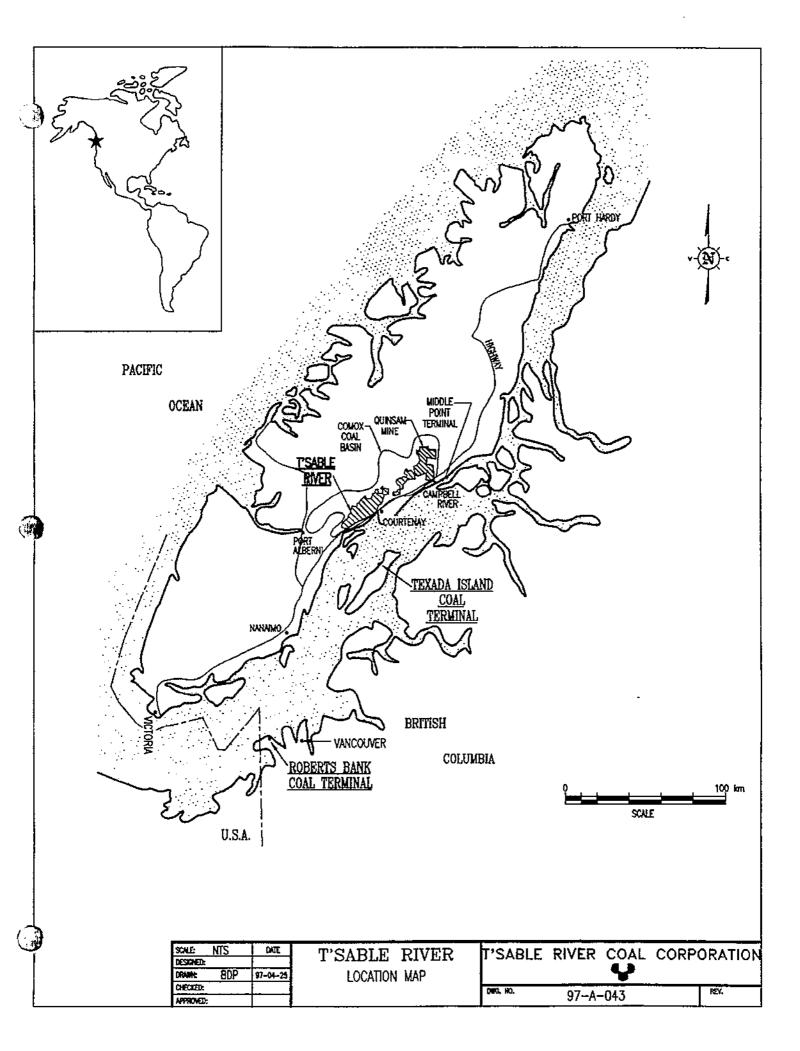
VANCOUVER ISLAND

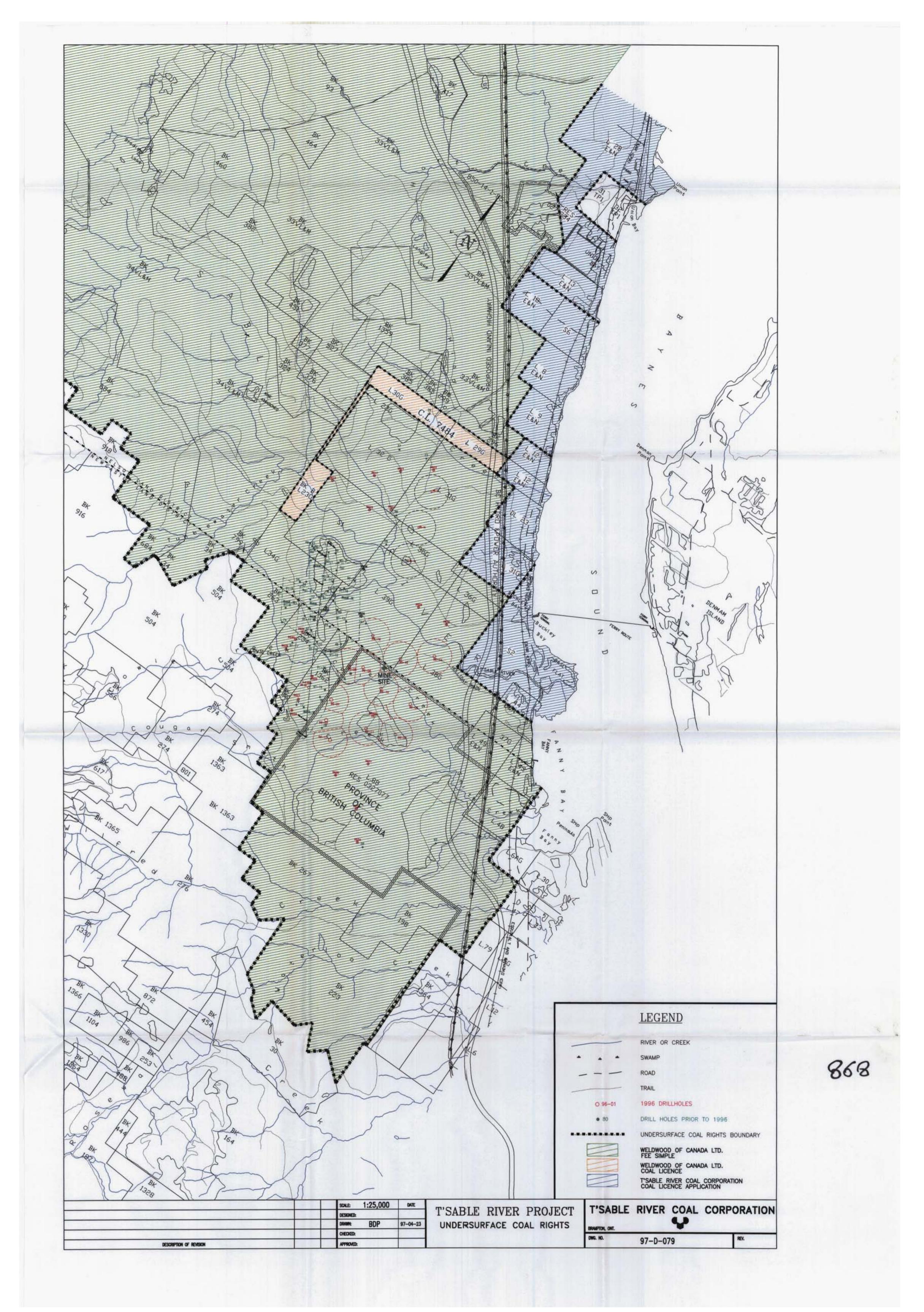
April 26, 1997

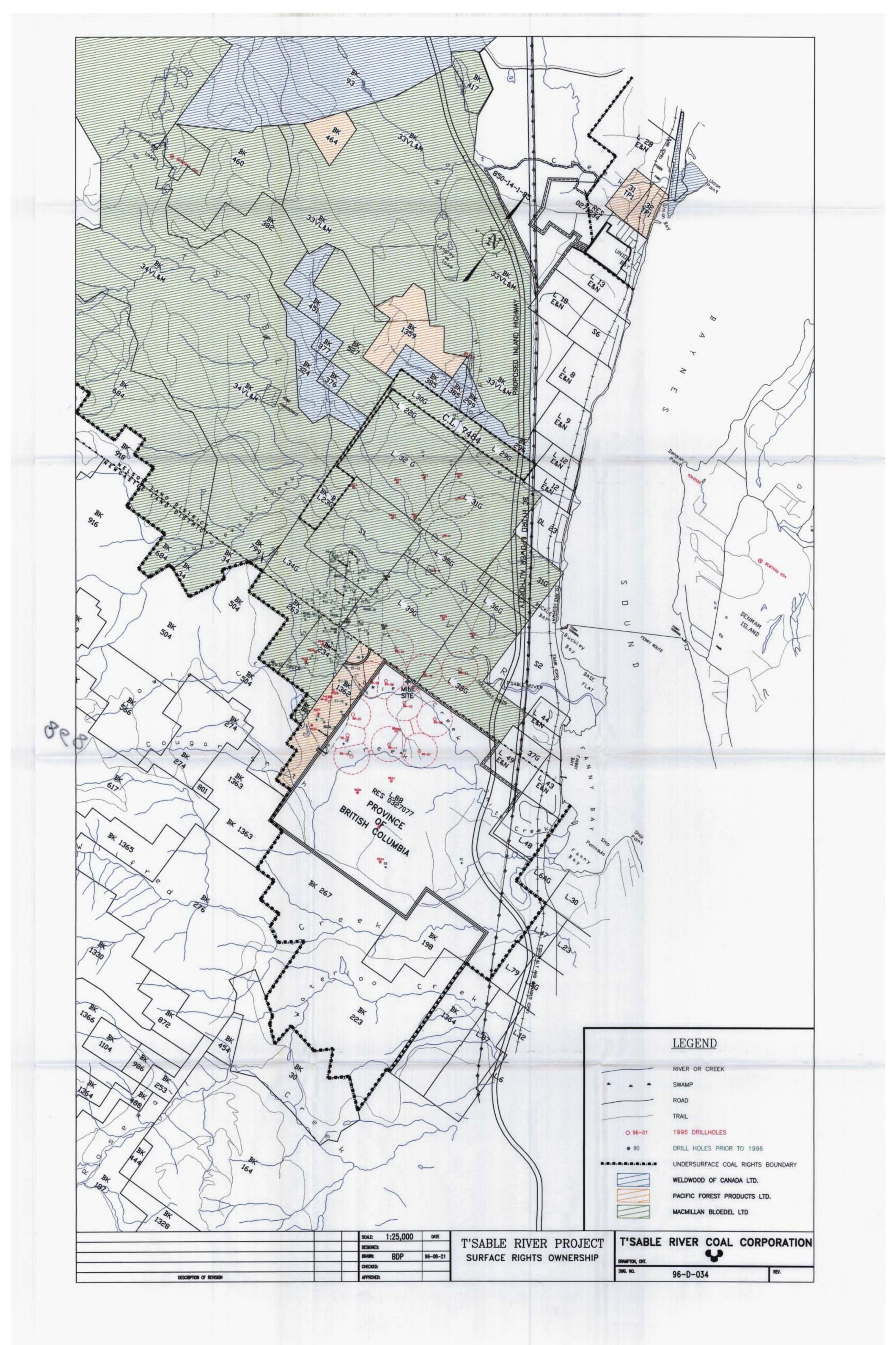
9

1.0 INTRODUCTION


Tsable River Coal Corporation has been conducting surface exploration work in the form of drilling and seismic on the Tsable River Coal Property for the past two years. As a result of this work, a broad area of some 39 million tonnes of in-situ coal resources have been defined that may be amenable to underground mining methods. In order to provide a better understanding of the deposit and mining conditions, the company is prepared to invest a substantial amount of money to perform underground exploration in the form of a bulk sample of 90,000 tonnes.


The Tsable River Coal Property is part of the Weldwood of Canada Limited Fee Simple Coal Rights area in the E. and N. Land Grant. Tsable River Coal has an option purchase agreement with Weldwood for these fee simple coal rights. Hillsborough Resources Limited., as Project Manager and majority owner of Tsable River Coal Corporation, is operator of the project.


This document is presented as an information package as a precursor to a formal application for removal of the bulk sample. It has been prepared jointly by Hillsborough Resources technical personnel and AGRA Earth and Environmental, retained as environmental consultants to the project. The removal of all coal produced from the bulk sample operation to the existing Coal Preparation Plant at the Quinsam Coal Mine greatly reduces the impact of the proposed bulk sample operation at Tsable River.


The aim of the document is to provide as much information as possible to allow various agencies to respond in a timely fashion, to assist in the expediting of the application so that work can begin this summer.

1-1

SECTION 2

1

Baseline Information for Application for a Mine Permit Tsable River Bulk Sample

Submitted to:

Tsable River Coal Corporation P.O. Box 5000 Campbell River, B.C. V9W 5C5

Submitted by:

AGRA Earth & Environmental Limited 4385 Boban Drive Nanaimo, B.C. V9T 5V9

> NX20129 April 1997

A

7)

TABLE OF CONTENTS

Page

2.0	BASELINE INFORMATION	1
2.1	CLIMATE	1
2.2	GEOLOGY AND DESCRIPTION OF DEPOSIT	1
2.3	TOPOGRAPHY AND SURFACE DRAINAGE FEATURES	1
2.4	WATER QUALITY	2 2 4
2.5	FISHERIES AND AQUATIC RESOURCES 2.5.1 Watercourses in the Area 2.5.2 Baynes Sound	4 4 5
2.6	SURFICIAL GEOLOGY, TERRAIN AND SOILS MAPPING2.6.1 General2.6.2 Surficial Geology and Terrain Mapping2.6.3 Soil Survey and Soil Capability Mapping2.6.4 Discussion	5 5 7 8
2.7	VEGETATION AND WILDLIFE	8
2.8	LAND STATUS AND USE	9
2.9	LAND CAPABILITY	10

April 1997 File No.: NX20129 Page ii

LIST OF TABLES

 Table 1
 Summary of Applicable Water Quality Criteria

Table 2 Summary of Water Quality Data

LIST OF FIGURES

- Figure 1 Bulk Sample Location
- Figure 2 Bulk Sample Site Plan
- Figure 3 Surface Water Baseline Sampling Locations
- Figure 4 Stream Classification of Bulk Sample Area
- Figure 5 Preliminary Surficial Geology of Bulk Sample Area
- Figure 6 Preliminary Terrain Mapping of Bulk Sample Area
- Figure 7 Preliminary Soils and Landform Mapping of Bulk Sample Area

LIST OF APPENDICES

Appendix A	Figures
Appendix B	Tables
Appendix C	Climate Data
Appendix D	Analytical Data
Appendix E	References

2.0 BASELINE INFORMATION

2.1 CLIMATE

The following are direct excerpts from the report entitled "Soils of Southern Vancouver Island" Ministry of Environment Technical Report 17, 1985 by J.R. Jungen;

"The weather of Vancouver Island is dominated by low pressure systems in the winter and high pressure systems in the summer (Tuller, 1979). Prevailing winds are predominantly from the southeast in winter, while northwest winds predominate in the summer. The Vancouver Island Range significantly modifies the easterly moving moisture-laden air masses."

"Solar radiation and hours of bright sunshine decrease from the southeast of Vancouver Island to the northwest. Summer temperatures are cool to mild; winter temperatures are also mild and extremes of temperature are rare. The freeze free period is relatively long, up to 230 days along the coast and 150 days in inland locations."

"The major portion of Vancouver Islands' precipitation falls during the winter. Winter and mean monthly precipitation increase from south to north and from east to west."

The bulk sample area is located on the western edge of a lowland plateau area approximately 1 kilometre to the west of Fanny Bay (See Figure 1). The weather stations at Courtenay and Comox Airport are the closest to the bulk sample area and selected data for these stations are included in Appendix 3 for reference. The data for the Comox Airport appears to be more complete and therefore will be used at the site, e.g., for final design of the water management system.

2.2 GEOLOGY AND DESCRIPTION OF DEPOSIT

Detailed geology of the bulk sampling area and of the deposit has been described by Steven Gardner, P.Geo. for Tsable River Coal Corporation. This analysis has been included in Section 3 of the application document.

2.3 TOPOGRAPHY AND SURFACE DRAINAGE FEATURES

Figure 2 provides the bulk sample location plan including drainage features and 2.5 metre topographic intervals.

The site is moderately sloped from west to east from the 100 metre contour above the site to approximately the 77.5 metre contour at the existing logging road. The vertical drop of 22.5 metres occurs over a horizontal distance of approximately 240 metres giving an average

slope of 9.4%, west to east at the site. The area further to the east of the logging road is relatively flat for approximately 750 metres to the new Island Highway right-of-way.

Cowie Creek runs in a west to east direction approximately 100 metres to the south of the bulk sample site. A slight depression with base sloping towards Cowie Creek from north to south through the bulk sample site lies between the 75 metre and 77.5 metres contours.

The bulk sample area lies on the drainage divide between the Tsable River and Cowie Creek. The mine plan for the bulk sample calls for diverting upslope drainage to the north along the western boundary the site by means of an interception ditch excavated at approximately the 97 metre elevation. This clean drainage will be routed along the northern side of the site and drain into existing watercourses which discharge to the Tsable River approximately 1500 metres to the north of the site.

Site drainage will be collected by a ditch system along the northern, southern and eastern boundaries of the site and routed to a settling pond system as described in Section 2.4.1. The effluent from the settling system will be routed into the same watercourses used for the clean water drainage and will also discharge to the Tsable River.

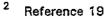
2.4 WATER QUALITY

2.4.1 Surface Water

Baseline water quality has been monitored at up to 10 sampling locations from July 1996 to present. The sampling locations were selected by Tsable River Coal Company to represent upstream, downstream and on-site water quality conditions. Sampling and analysis has taken place on a biweekly basis for the major sampling locations on Cowie Creek, Tsable River and Cougar-Smith Creek throughout the fall and winter months of 1996/1997. Smaller tributary streams in the proposed bulk sample area include Sammy, Grade, January, Fastwater and Kilometre 4 Creeks which have been sampled on a monthly basis over the same period. Sampling locations are shown on Figure 3.

Parameters analyzed include physical parameters, suspended and dissolved solids, sulphate, nutrients and total and dissolved metals. The tabulated analytical results and the laboratory data are included in Appendix 4.

Table 1 summarizes the applicable water quality criteria for the bulk sample area. The identified resource value of Cowie and Cougar-Smith Creek and their tributaries as identified in Section 2.5 are drinking water and fish habitat and therefore the Canadian Drinking Water Guidelines¹ (CDWG) and the BC Environment freshwater aquatic life criteria² (BCE) are


¹ Reference 20

applicable. The most stringent of the two criteria should be applied to the analytical results. The identified resource value of the Tsable River and its tributaries is fish habitat and therefore the BC Environment freshwater aquatic life criteria are applicable. In instances where BCE criteria does not exist the CDWG criteria may be useful for comparison.

The water quality data for the period of monitoring indicate that the baseline water quality in the area of the proposed bulk sample location is within the CDWG and BCE guidelines with the exception of one sample taken at the Tsable River site during the first week of September 1996. The sulphate result at 162 mg/L exceeds the BCE aquatic life criteria of 100 mg/L. The analytical result for TDS of 2300 mg/L, while not comparable to BCE criteria, is much higher than the CDWG TDS criteria of 500 mg/L. It is also noted the dissolved magnesium concentration is elevated, although it does not exceed the CDWG criteria. Comparison of these results to the analytical results for the Tsable River taken 2 weeks later indicates that the elevated concentrations of TDS, sulphate and magnesium are comparable to the other streams in the area. The elevated concentrations appear to be a short-term occurrence and may be related to a storm or other event. Two other instances of elevated TDS and sulphate, not exceeding criteria, are noted for the Tsable River during the first week of August 1996 and the third week of December 1996. Tsable River Coal Corporation suspects that the elevated levels may be the result of seawater mixing at the Tsable River sampling site which is located at the Highway 19 bridge. Further sampling and analysis to augment the baseline data will take place upstream at the new Tsable River bridge beginning in May 1997.

Effluent from the bulk sample project area will consist of surface runoff and water pumped out of the bulk sample adits. An application will be made to BC Environment for a 15 month Approval to discharge effluent from the bulk sample settling ponds. It is anticipated that the effluent will discharge into the Tsable River drainage in order to afford maximum protection to Cowie Creek which is used as a drinking water supply for the Fanny Bay Waterworks District. Discharge to the Tsable drainage will also allow additional space for installation of additional control structures if required. Sediment control and the potential for acid rock drainage (ARD) are two issues which will require further study although preliminary reviews of acid base accounting (ABA) data for drill core samples indicated low potential. Preliminary layout and sizing of the settling ponds is provided in Section 2 of this report. Further sizing in accordance with the applicable design criteria contained in the BC Environment settling pond design criteria³. ARD source control will be applied to the bulk sample area. ARD potential and control is addressed in Section 3 of this report. It is anticipated that the metals criteria applied to BC Environment's current Waste Management Permit PE07008 for effluent at the Quinsam minesite will be applicable to the discharge from the Tsable River bulk sample settling ponds.

³ Reference 21

2.4.2 Groundwater

A 1990 water resources study⁴ prepared for the Ministry of Transportation and Highways surveyed the groundwater use in the Fanny Bay area (Section 441 of the Vancouver Island Highway Project). The report indicates that 20 wells existed in Section 441 as of 1990. Of these, 18 are shallow dug wells ranging in depth from 4.5 to 26 feet. Known well yields range from 10 to 20 gallons per minute, although yields are not available for most wells in this section.

Groundwater use in Section 441 includes community and domestic water supply and irrigation. The Fanny Bay Waterworks District draws its water from Cowie Creek by means of a 26 foot deep well located in the alluvial gravels of Cowie Creek.

The majority of wells in Section 441 are located near Fanny Bay and Buckley Bay in deposits of tills, silts and clays. The nearest wells to the proposed bulk sampling location are approximately 750 to 1000 metres to the east.

Baseline groundwater sampling and analysis has not been performed to date. A well located directly above the proposed bulk sampling adits is in place and will be sampled during May 1997 to establish baseline groundwater data.

2.5 FISHERIES AND AQUATIC RESOURCES

2.5.1 Watercourses in the Area

Water courses downgradient of the bulk sample area include the Tsable River and Cowie Creek which flows into Cougar-Smith Creek. Kilometre 4 Creek, a tributary of the Tsable River is also in the vicinity upgradient from the bulk sample area. Stream classification for these watercourses was recently carried out in the area of the bulk sample for MacMillan Bloedel Limited. Figure 4 is the stream classification map which was prepared as part of the study.

Figure 4 indicates that the Tsable River, Kilometre 4 Creek and Cowie Creek, downgradient of the bulk sample area, are all fish bearing. Cowie Creek, upgradient of the bulk sample area, is indicated to contain resident fish.

The MOTH report⁵ prepared for the new Island Highway summarized Cowie Creek and the Tsable River as follows; Cowie Creek has a drainage area of 23.5 km². Fish species present

⁵ Reference 3, pp. 8-12.

٩

⁴ Reference 7

in Cowie Creek include coho and chum salmon, steelhead and sea-run cutthroat trout. The Tsable River has a drainage area of 102.9 km². Fish species present in the Tsable River include coho, pink and chum salmon, steelhead and sea-run cutthroat trout. The lower 1.75 kilometres of the River is used extensively for both spawning and rearing.

Kilometre 4 Creek is indicated as fish bearing on Figure 4. According to the Tsable River Coal Corporation, the Federal Department of Fisheries and Oceans (DFO) electrofished the Creek in the late fall of 1996 and no fish were found to be present. A further round of electrofishing may be performed by DFO during a selected time in 1997.

2.5.2 Baynes Sound

Baynes Sound is known as an important shellfish habitat area. Locations of shellfish beds and species present have not been determined. DFO will be consulted in conjunction with the Vancouver Island Mine Review Committee (VIMRC) to determine if concerns exist for protection of shellfish habitat near the mouths of the Tsable River and Cougar-Smith Creek, and issues to be addressed regarding Baynes Sound as a whole.

2.6 SURFICIAL GEOLOGY, TERRAIN AND SOILS MAPPING

2.6.1 General

A summary of the surficial geology, terrain, soil survey and soil capability mapping has been compiled from information from existing sources only; no field work was conducted as part of the current assessment. This information applies to the immediate minesite portal area, workshop, coal storage area, proposed topsoil and till storage and settling pond areas.

Primary sources of existing information include provincial and federal government inventory information, and inventory information and interpretive information from other major projects in the area. The latter include:

- Vancouver Island Highway Project;
- BC Hydro 500 KV powerline construction; and
- Centra Gas natural gas pipeline project.

Existing government map inventory information sources are at scales of 1:50,000 or smaller. The scale of the source maps is small, and the map polygons are large relative to the size of minesite and related activity areas for the areas noted above.

The existing maps and descriptions allow a broad framework to be established for understanding surficial geology and soils conditions in the context of the landscape of the proposed project area. Opportunity is also provided by these maps for understanding the

overall relationships between surficial geology and soil conditions and various interpretations, e.g., slope stability, erosion and sedimentation potential and soil suitability for various uses such as agriculture.

The following sections provide a discussion of conditions at the site as can be inferred from the existing information.

2.6.2 Surficial Geology and Terrain Mapping

Surficial geologic mapping at a scale of 1:50,000 by Fyles (1963) indicates that the proposed bulk sample area is underlain by late glaciomarine and marine deposits consisting of silty to stony clay ranging in thickness from 2 m to more than 10 m.

Site specific information on the surficial geology of the area and region was gathered for the corridor evaluation study conducted for the Vancouver Island Highway project⁶ (B.C. Ministry of Transportation and Highways, 1988). The study identified scattered exposures of gravel and sand within the glaciomarine clay unit mapped by Fyles. Isolated exposures of glaciofluvial sand and terraced, gravelly and silty sands (Capilano Sands) flank the Tsable River some 600 m to 700 m north of the site and in a separate outlier south of the site between Cougar Smith and Cowie Creeks. Till deposits are apparently present in the region (MoTH, 1988), but continuous exposures have not been mapped. Organic materials are present in low, poorly drained areas. The range in thicknesses of surficial deposits is governed by the underlying bedrock topography which undergoes dramatic changes throughout this area.

Existing terrain mapping has been completed as part of the Vancouver Island Highway Project. The site is located at the eastern edge of the unsubmerged coastal plain located between the Vancouver Island Ranges to the west and the Strait of Georgia to the east. The surface expression of the upland area, including the proposed bulk sample site, is generally dominated by undulating terrain with incised stream valleys. The Tsable River, approximately 200 m to the north, lies within a channel that is 15 to 20 m deep on average. Stream channels in the areas contain recent fluvial deposits.

⁶ Reference 6.

2.6.3 Soil Survey and Soil Capability Mapping

Several existing inventory sources of information have been used.

Relatively old but still very useful soil survey information is provided in a report of the British Columbia Soil Survey⁷. Mapping is at a scale of 1:63,360. Soil series are identified and features described on the map legend include: soil group (classification); drainage; dominant topography; stoniness; and description of virgin soils.

Provincial soil survey and terrain inventory information is provided in a relatively recent B.C. Ministry of Environment document⁸. Soil associations are mapped at a scale of 1:50,000 and published at a scale of 1:100,000. Soil components are described along with such characteristics as: parent material; most common texture; most common drainage; vegetation zonation; slope classes; and soil phases.

Manuscript maps to accompany the above are available for: terrain; and land capability for agriculture.

Soils in the area of the proposed Tsable River bulk sample area can be briefly described as follows:

Proposed sandstone excavated stockpile area and future stacker & coal pile, major portion of eastern end - Soils are primarily gravelly and very gravelly loamy sands less than a metre thick developed in the glaciomarine, marine and shallow fluvial deposits. The area occupied is relatively level. Coarse fragment content is generally at least 40% and may be >50%. Surface horizons are strong brown to brown and medium to strongly acid. A prominent feature of the type of soils occurring in this area is a strongly cemented horizon (duric layer) usually occurring in the range of 75 to 120 centimetres below surface, and immediately above the unweathered surficial geologic materials. Drainage is likely impeded by this secondary cementation. Classification according to the Canadian System of Soil Classification is Duric Brunisols or Humo-ferric Podzols.

⁸ Reference 18. Accompanying map sheets specific to the subject site is: Soils of South Vancouver Island, British Columbia. Soil Survey Report. No. 44. Sheet 5 (Powell River), Sheet 3 (Port Alberni).

⁷ Reference 17. Accompanying map sheet specific to the subject site is: Soil Map of Vancouver Island, British Columbia, Qualicum-Alberni sheet.

Proposed topsoil storage, till storage and western end of sandstone excavated stockpile area and future stacker and coal pile - Soils are predominantly gravelly loam with some very gravelly and gravelly loamy sands less than a metre thick and usually developed in glacial tills. The area occupied is moderately sloping. Coarse fragment content is generally 20 to 50%. Surface horizons are strong brown to brown and strongly acidic. In the soils in this area there is also usually a strong to moderately unweathered compact surficial geologic materials. Drainage may be impeded by this secondary cementation. Classification according to the Canadian System of Soil Classification is likely to be Humo-ferric Podzols.

2.6.4 Discussion

The information obtained from existing maps and reports, related in the foregoing summary, and the limitations in applying these data to the current project, are fully recognized by AEE. They do not allow detailed planning for critical reclamation related activities such as soil salvage, soil stockpiling and soil replacement strategies. Selection of specific areas for storage of soils or for location of settling ponds can only be generally based on these maps. Similarly, prescriptions cannot be prepared for the depths of excavation for soil salvage based on the existing information.

Preliminary field investigations in the immediate area of the mine can be undertaken within a relatively short period of time, as required, in order to create smaller map polygons and more specifically attribute the legend and report descriptions to smaller areas of the landscape. Such work is required if mapping at a scales of 1:5,000 are to be prepared in accordance with Resource Inventory Committee (RIC) Guidelines⁹ and Standards and the requirements indicated in Appendix 1 of the *Application to Obtain a Mines Act Permit Approving the Mine Plan and Reclamation Program*.

2.7 VEGETATION AND WILDLIFE

The understorey vegetation type for the site appears to be comprised of salahuckleberry and sword fern. Potential impacts of concern for the subject area involve the riparian vegetation (vegetation adjacent to and influenced by waterways). Riparian vegetation functions to provide slope stability, preventing soil erosion into the waterway which can result in siltation of downstream spawning beds. It also acts as a solar buffer for the waterway on which it borders, and provides habitat to wildlife.

9

⁹ Reference 14.

The wetland areas are used for bird nesting and year round production for different fish species (estimated that wetlands account for over 50% of coho production in many streams).

Vegetation and wildlife mapping for the subject site is currently not available at a 1:5,000 scale. A 1:5,000 map may be available for the wetland mapped areas, however, it appears to be derived from air photo interpretation where many habitats and wetlands maybe missed due to scale. Field surveys should be conducted to confirm the mapped information and can also provide additional data on season water depths, water chemistry and plant species for many habitats.

Studies in the area of the site have indicated that there is regular use by numerous species of wildlife. Of particular importance are elk, black tailed deer, black bear, wolf, cougar, beaver, muskrat, otter mink, raccoon, marten, weasel and red squirrel. Ducks, Canada geese, trumpeter swans, blue grouse, ruffled grouse band-tailed pigeon, great-blue heron and bald eagles have all been sited in the area with approximately 260 other species of birds. The creeks and rivers along with the wetland areas provide important habitat and rearing areas. The most sensitive period is expected to be from March through June when wildlife are nesting and rearing their young.

No species listed as threatened or endangered in a Canadian context are believed to occur in the site area. The BC Ministry of Environment Lands and Parks, however, has prepared lists of vertebrate animals whose status is of concern in the province. Species of vertebrates which occur or are believed to occur in the area of the site include: marbled murrelet, Keen's long-eared myotis, Townsend's big-eared bat, clouded salamander, bald eagle, great blue heron and the Roosevelt elk.

2.8 LAND STATUS AND USE

The population forecast for the Fanny Bay/Buckley Bay area indicates an expected medium growth rate of 1.2% per year.

Sport hunting is permitted in the autumn, with black bears also being hunted in the spring. Some trapping occurs in the region, however, it is not a major economic activity for this area.

Existing transportation for the area includes the Island Highway, Highway 19, the E&N Railway and various logging roads.

Aboriginal use of the bulk sample area has not been determined. Tsable River Coal Corporation will seek direction from the VIMRC as to which aboriginal groups, if any, will require consultation as part of the mine permit application process.

The proposed bulk sample area occupies approximately 4 hectares in the Newcastle Land District immediately south of the boundary between the Newcastle and Nelson Land Districts. The site, as proposed, is entirely on Crown Land.

The land immediately north of the site, in the Nelson Land District is owned by MacMillan Bloedel Limited. MacMillan Bloedel is a major forestry owner and has established numerous plots to measure volume/yield ratios. MacMillan Bloedel has also established rapid growing poplar plantations for fibre production on lands immediately adjacent to the facilities for the proposed project. The uses of MacMillan Bloedel land which is anticipated at this time in relation to the proposed project is the use of the present watercourses for routing of the settling pond effluent into the Tsable River drainage, the re-routing of the present logging road to the east and the use of the logging roads for hauling the bulk sample coal. Tsable River Coal Corporation has entered into discussion with MacMillan Bloedel on these issues. The undersurface coal rights in the vicinity of the bulk sample are owned by Weldwood of Canada Limited.

2.9 LAND CAPABILITY

The present land use for the bulk sample area is Crown Land commercial forest. It is anticipated that this use will continue after reclamation of the bulk sample area. Crown Lands will require the area to be returned to its present forest productivity and these issues are addressed in the Reclamation Plan in Section 3 of this application document.

APPENDIX A

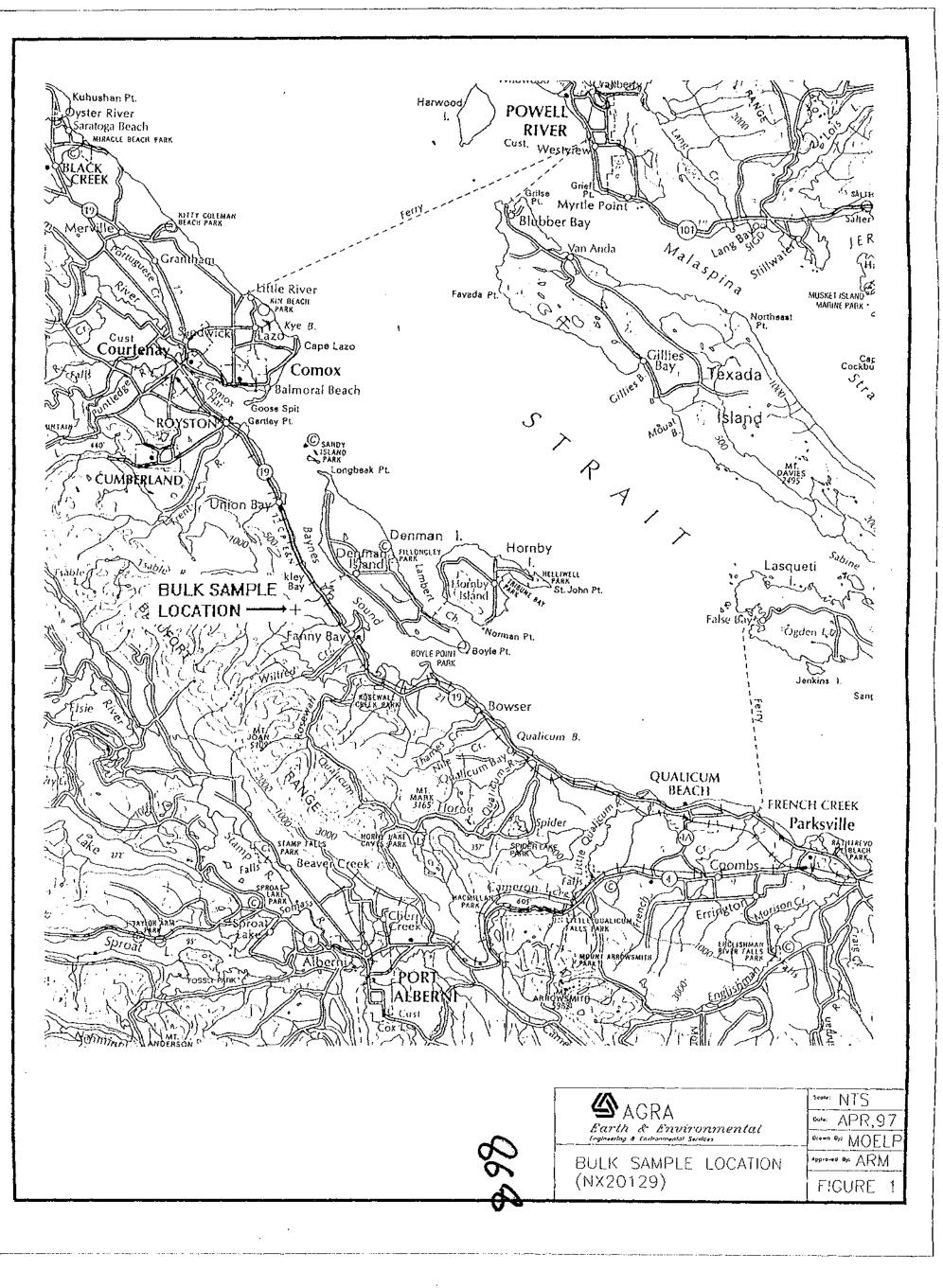
.

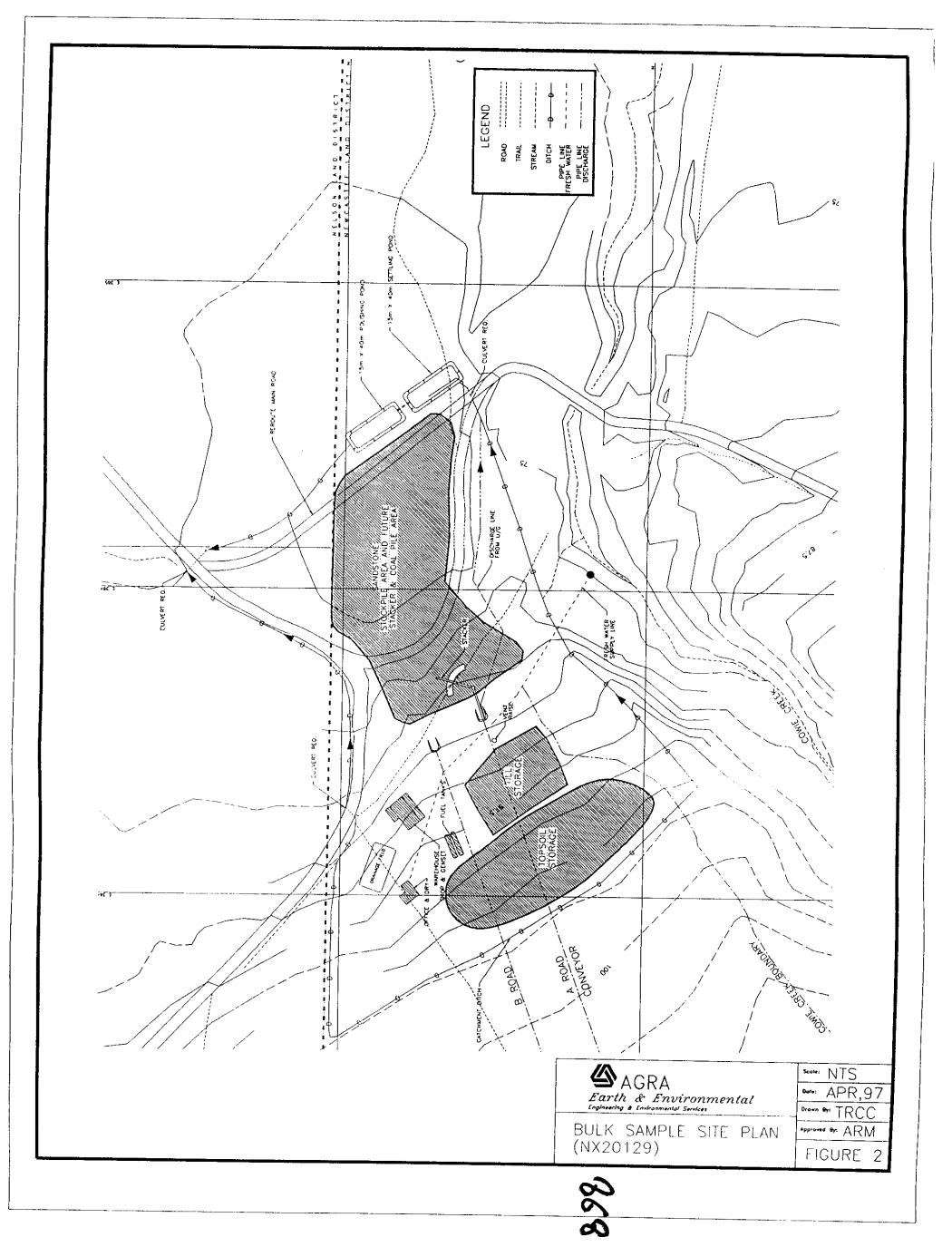
٠

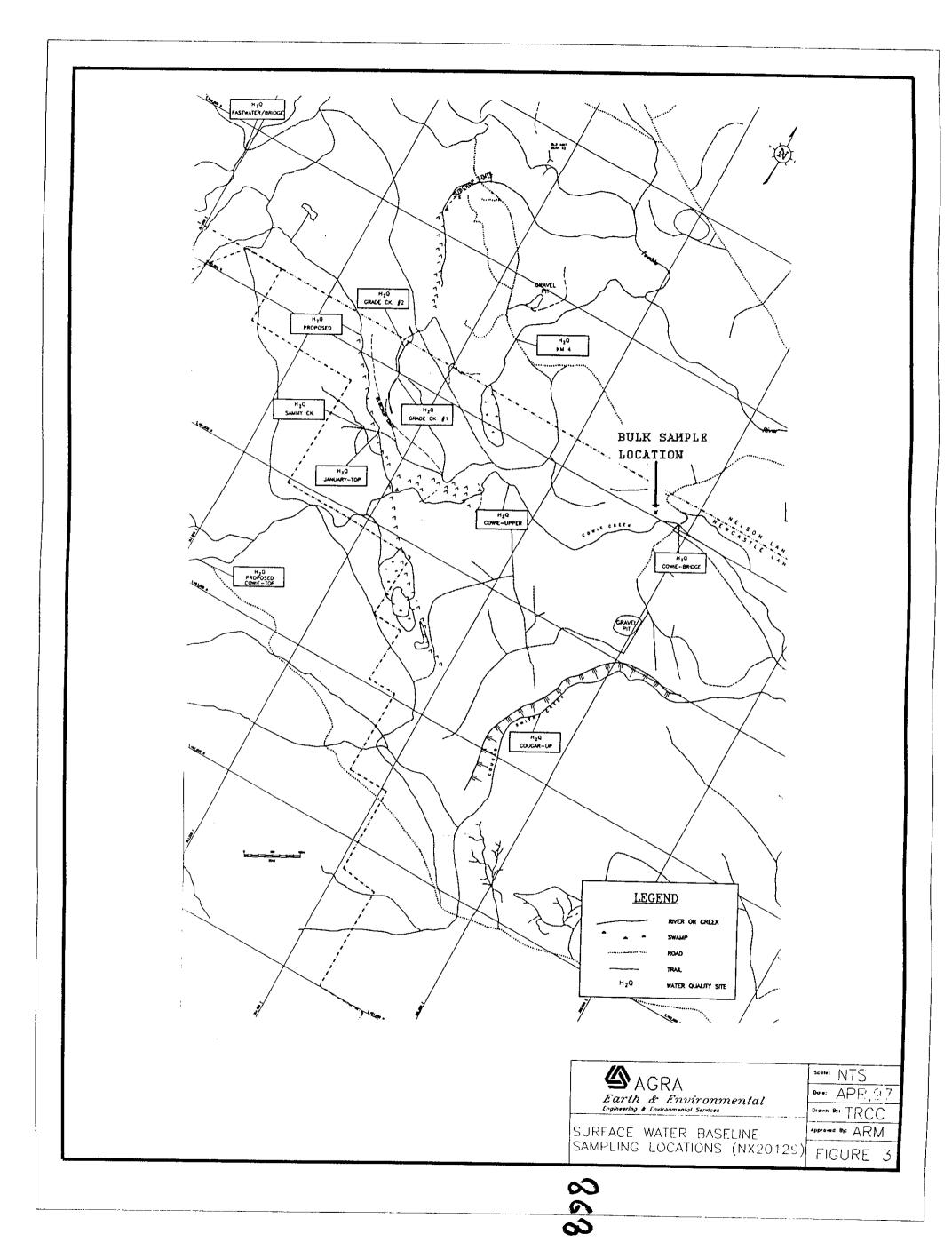
-

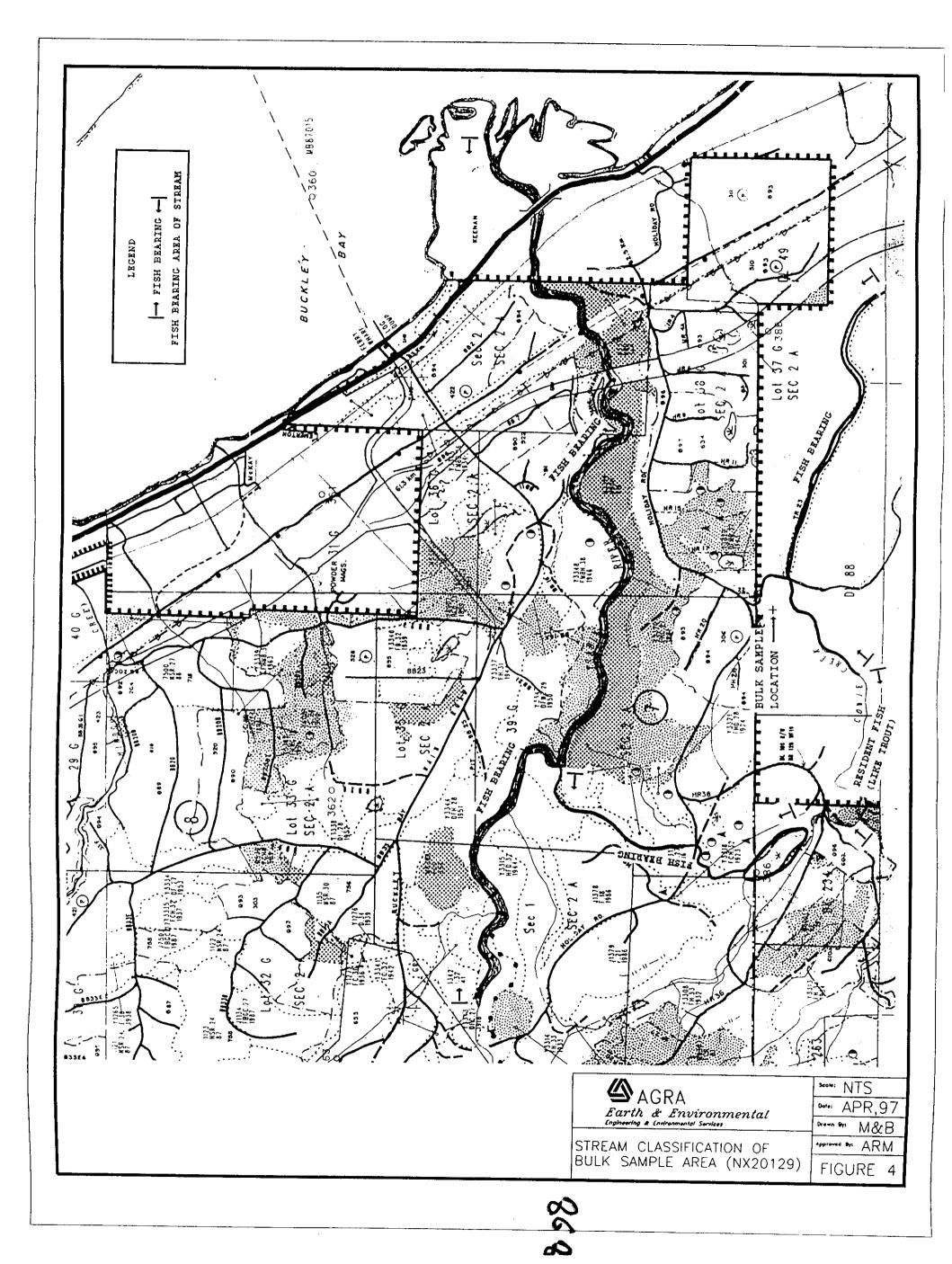
()

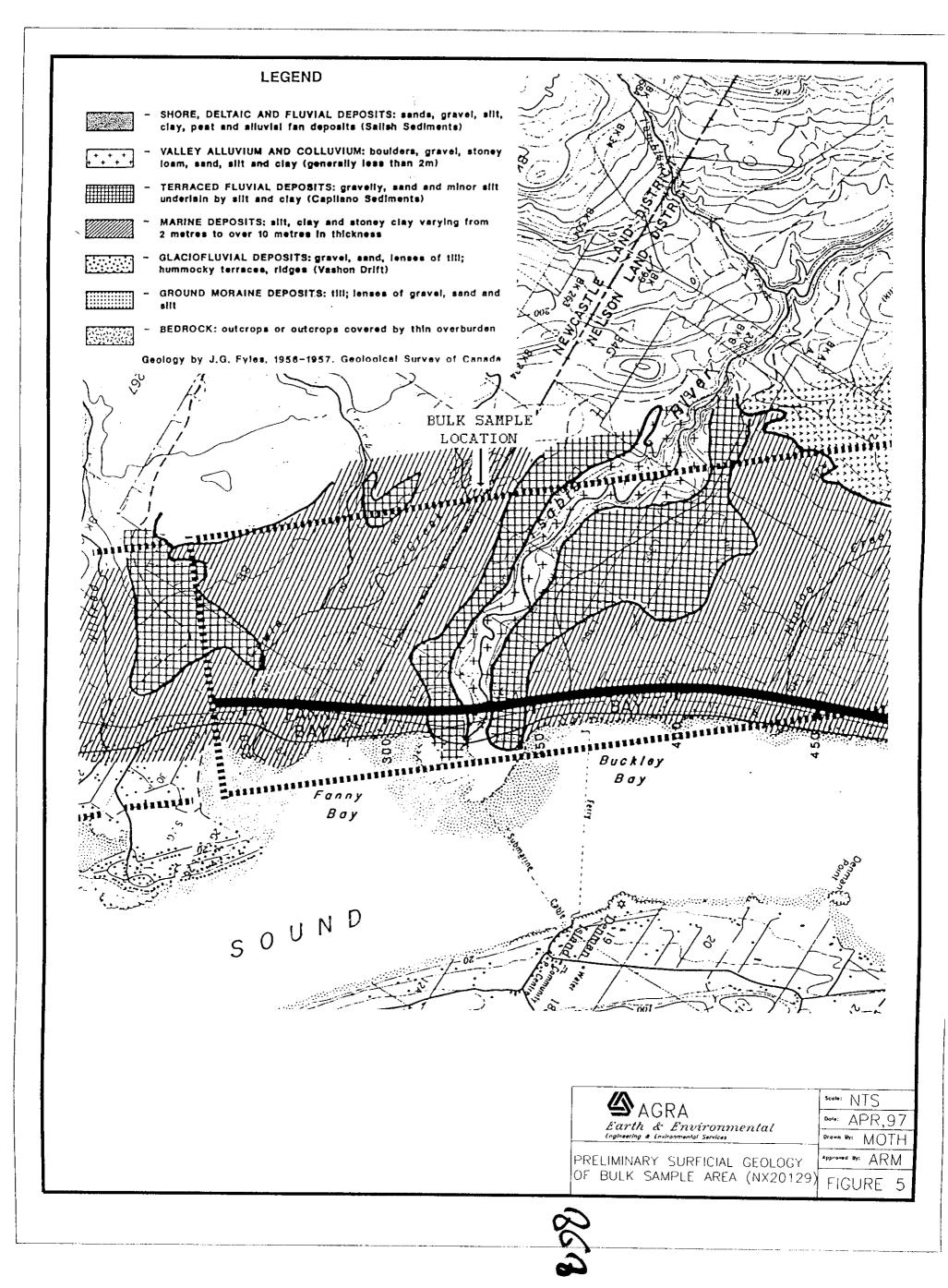
٩

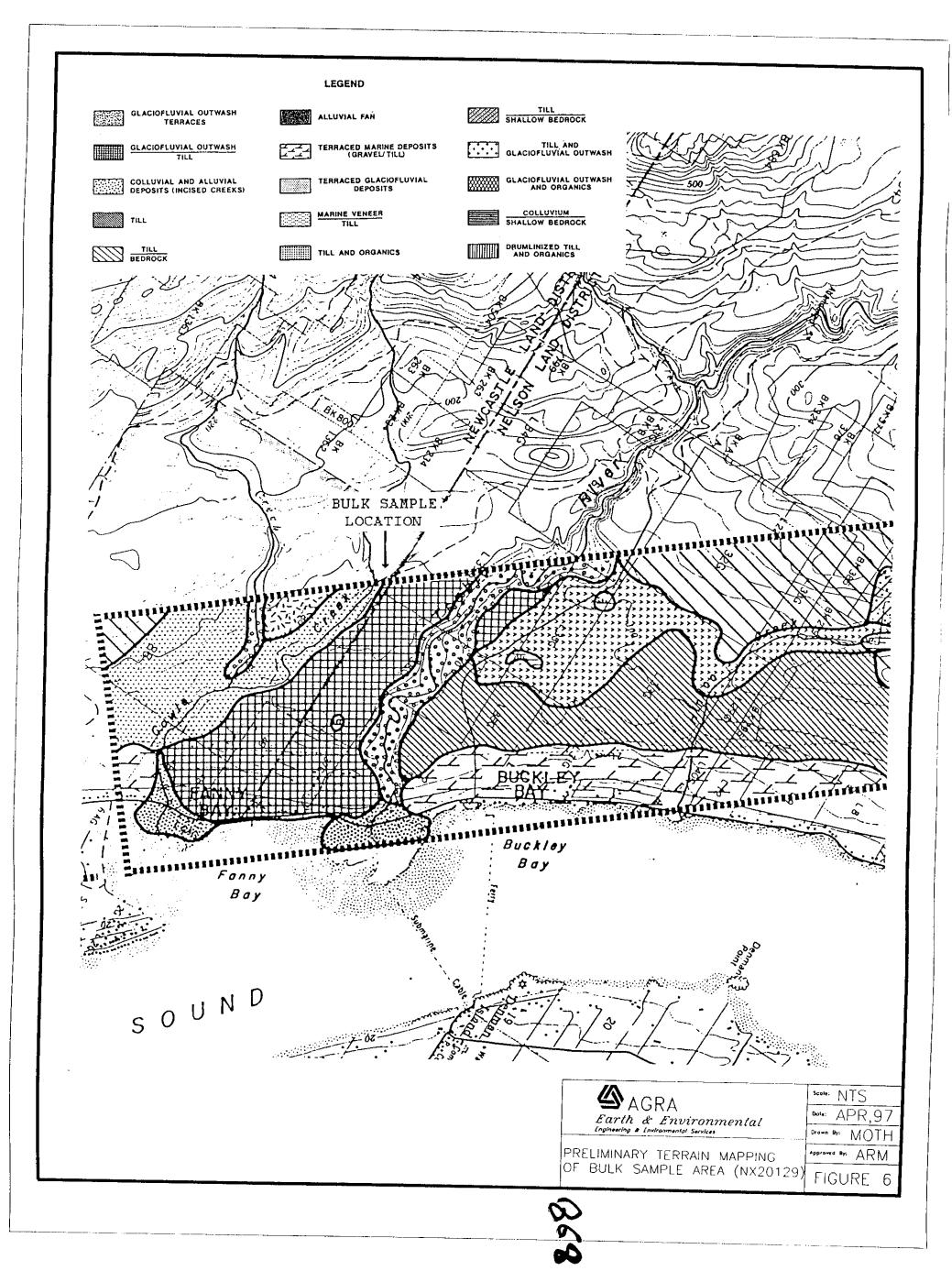

.

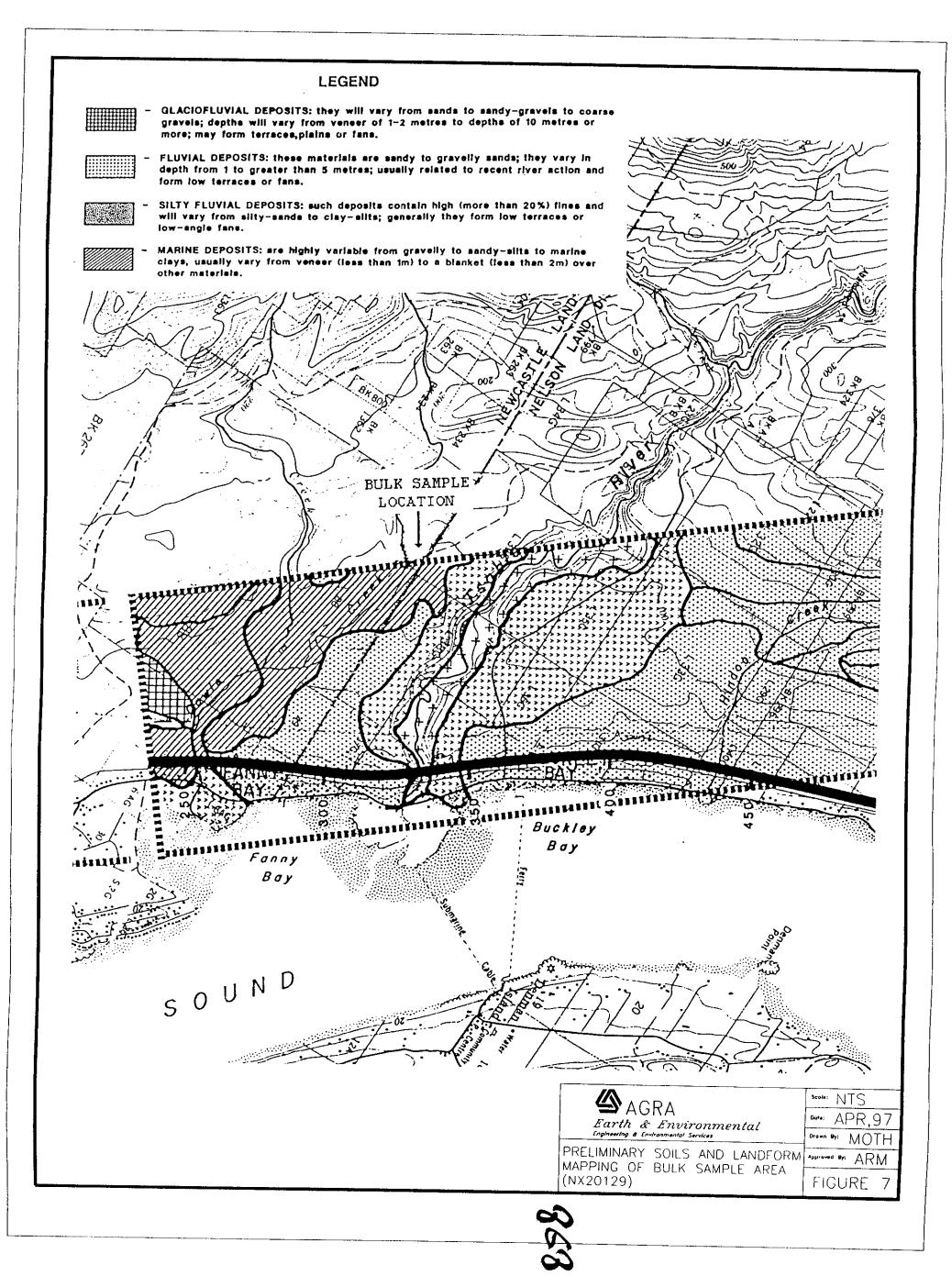

.


FIGURES


,







APPENDIX B

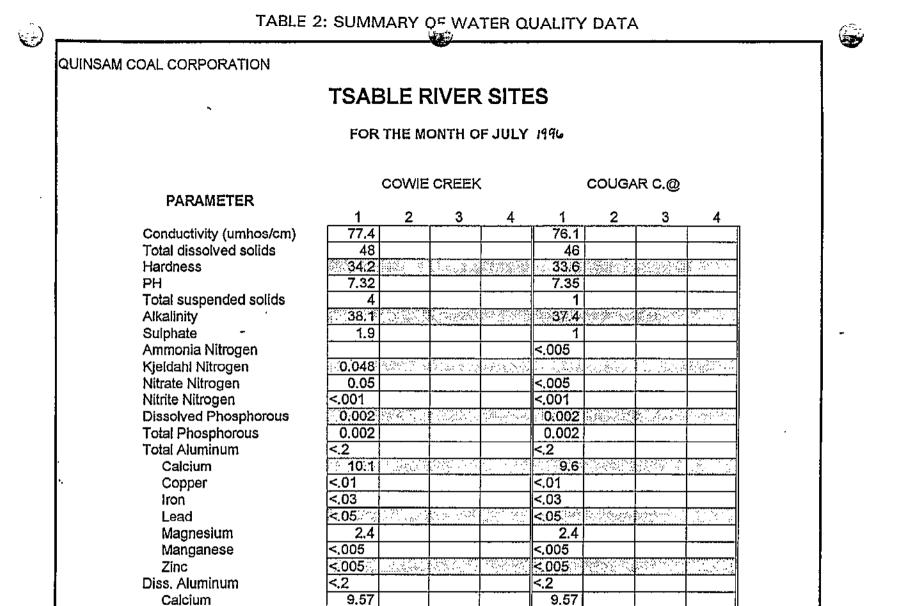
.....

Ð

 \mathbf{i}

TABLES

TABLE 1: SUMMARY OF APPLICABLE WATER QUALITY CRITERIA


,

Conductivity (umhos/cm) Total dissolved solids Hardness		max. concentration (mg/L)
Hardness	500	
PH	6.5 - 8.5	6,5 - 9.0
Total suspended solids		
Alkalinity		J J
Sulphate	500	100
Ammonia Nitrogen		
Kjeldahl Nitrogen		
Nitrate Nitrogen	10	200
Nitrite Nitrogen	1	0.06
Dissolved Phosphorous		
Total Phosphorous		
Total Aluminum		
Calcium		
Copper	5	[0.094(hardness + 2)]
Iron	0.3	0.3
Lead	0.05	exp[1.273 in(hardness) - 1.460] at hardness > 8 m
Magnesium		
Manganese	0.05	100
Zinc	5	0.03
Diss, Aluminum	0.2	0.1 at pH > 6.5
Calcium		· · · · · · · · · · · · · · · · · · ·
Copper		
Iron	······································	
Lead		
Magnesium	100	
Manganese		
Zinc	1	

1

 \bigcirc

1

Results expressed as milligrams per litre except where noted.

Copper

Magnesium

Manganese

Iron

Lead

Zinc Oil and Grease <.01

2.37

<.005

<.005

<.03

<.05

197

×.....

<.01

<.03

<,05

(), ju

2.37

<.005

<.005

÷.

13.815

QUINSAM COAL CORPORATION 9. C. M TSABLE RIVER SITES FOR THE MONTH OF AUGUST 1996 COWIE CREEK TSABLE R.@ COUGAR C.U COUGAR C.@ PARAMETER 1 2 з 1 2 з 4 4 1 2 з 4 2 З 1 4 Conductivity (umhos/cm) 89.0 536.0 96.2 86,8 Total dissolved solids 52 278 62 60 34.9 Hardness 1000 49,9 9-19 1 34.8 35 900 J.D e su de constante de la consta PH 7.66 7.62 7.75 7.76 Total suspended solids 1 2 1 Alkalinity 43.9 1962 26.7 (<u>(</u>) 45.7 - 3.888°° 40.2 122 . . Sulphate 2.1 24.9 1.7 <1 Ammonia Nitrogen <.005 <.005 <.005 <.005 Kjeldahl Nitrogen 0.07 2,24 0.06 35 N - 40 0.09 1.1 Nitrate Nitrogen 0.066 <.005 0.098 0.065 Nitrite Nitrogen <,001 <.001 <.001 <.001 **Dissolved Phosphorous** <.001 . 000 . <.001 0.004 * 2. j 0.001 es 1 **Total Phosphorous** 0.001 0.003 0.004 0.003 **Total Aluminum** <.2 <.2 <,2 <.2 Calcium 11.2 9.19 11.7 `≈_;, ;) 3. H A.S. 9.58 Copper <.01 <.01 , <.01 <.01 Iron <.03 <.03 <.03 <.03 <.05 Lead <.05 ×... , and <.05 < 05 550eV31 . 5 e . Magnesium 2,52 8.42 2,93 2.7 Manganese <.005 <.005 <.005 <.005 <.005 Zinc <.005 <.005 200 <.005 275, Diss. Aluminum <.2 <.2 <.2 < 2 Calcium 10.1 7.85 9.77 9.58 Copper < 01 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<.01 ्रद्धाआ <.01 يە قى <.01 194 B 1.752.00 े क iron <.8 <.03 <.03 <.03 Lead <.05 <.05 <.05 <,05 Magneslum 2.34 1000 7,35 2.53 2.7 Sec. 20. Manganese <.005 <.005 <.005 <.005 Zinc <.005 <.005 <,005 <.005 Oil and Grease

Results expressed as milligrams per litre except where noted,

1 95.4 52 38.3	COWIE CRE 2 3 	4	FOR TH	<u>e mon</u> Tsabli		EPTEMI		COUGA	VR C.U	l		COUGA	۱R C.@	
1 95.4 52	<u>2</u> 3 90,	4		TSABLI	E R.@			COUGA	R C.U			COUGA	AR C.@	
52	90,											,		
52	90,		1	2	3	4	1	2	3	4	1	2	3	4
52		9	4380		40				79.7		87.3		83	
38,3		3	2300		21				46		52		53	
	43.		408	1899-181	14.1	a ta za e 🕅	194 K. S.		66,5	900 C 100 C	33.5	See a comp	37.1	8 8 . Y
7.71	7.7	7	7.47		7.47				7.58		7.84		7.66	
1	<1		1						18		1		1	
									40.4				40	
3.1			162		2,8				<1		2.1		4	
									0.015					
				Section 200		1	1.X1	1	2/3333.0	800.2×				4 E -
0.078		1	0.101		0.047				0.084		0.061		0.058	
]
				2440-43 1		14 A.Y.S.	<u> </u>					20320 <u>8</u> 2		· · · · · · · · · · · · · · · · · · ·
		1]					<u> </u>				0.007			
				ļ., .										
		8					r. 😤					60 A. 40 A.		
		1												
					<.03							1		
					<,05	- No.	<u></u>	See		S. Oak y		:). • • •		
										ļ				
		<u> 2003 (10</u>						5.7.EZ						·
							ļ							
		_		e,a ≼r ∈ :				<u> </u>				ray yi atay		
				<u> </u>		<u> </u>	ļ							
		-				pavarwee e		591121125 8 000						
		<u>(</u>						build w		<u> </u>		480,000 B		<u></u>
		_												
	1 46.7 3.1 <.005 0.08 0.078 0.002 0.004 0.004 <.2 11.5 <.01 <.03 <.05 2.65 <.005 <.005 <.2 11.1	1 <1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

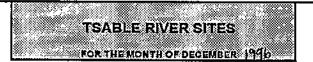
Results expressed as milligrams per litre except where noted.

INSAM COAL CORPORATION																
					TSA	BLE	RIVE	R SIT	ES							
					FOR	THE MO	NTHOF	OCTOB	ier 199	p						
											-					
PARAMETER		COW	E CREE	К		TSABL	E R.@			COUGA	AR C.U			COUG/	AR C.@	
PARAMETER	1	2	з	4	1	2	3	4	1	2	3	4	1	2	3	4
Conductivity (umhos/cm)	92,3		77.8		81.9		30.8		89.9	<u> </u>	66.7		87	<u> </u>	79.3	- 4
Total dissolved solids	56		46		47		22		54		30		51	·	33	
Hardness	43,8		27.1		22.5		11.6		42.6	×			37.5	-	27.5	- <u>1</u>
рН	7.71	i	7.56		7.58		7.28		7.79	<u> </u>	7.48		7.69		7.52	
Total suspended solids	<1		<1	Í	4		<1	1	3		1.10		5		4	
Alkalinity	45	1.2.22	25.6				11.6	1. A.S.		S. 1986 -	20.4	19 1022	-		25.6	<u> </u>
Sulphate	2,6		1.5		6.4	1	1.7		2,6		<1		2.2	<u></u>	2.6	······
Ammonia Nitrogen	<.005		<.005	1	<.005		<.005		<.005		<.005		<.005		<.005	
Kjeldahl Nitrogen		- STRO	0.151	188. ozn	18. S.		0.06	4	1988	*? ~ <u>@</u>		100. · · ·			0.124	81.5
Nitrate Nitrogen	0.045		0.001	1	0.065		0.001		0.044		0.001	<u></u>	0.024		0.001	<u> </u>
Nitrite Nitrogen	0.001		0.004		0.001		0,005	1	0.001		0.004		0.001		0.009	
Dissolved Phosphorous	0.004	E. Barris	0.004	1.2000.0	0,004		0.005	1	0.004	1		10.27	0.005		0,01	
Total Phosphorous				T			1				1	1		<u> </u>		
Total Aluminum	<.2				<.2		· · · ·		<,2	-	ŀ		<.2			
Calcium	12.8		1. j.j.)		6.62				12.6	i Yali			12.8		V	
Copper	<.01				<.01	1		1	<.01			1	<.01		1	<u></u>
Iron	<.03				0.05			1	<.03			1	<.03			
Lead				1. ST .	<.05			1	<.05				<.05			
Magnesium	2.88				1.55			1	2.84				2.88			
Manganese	<.005		{		<.005		1	<u> </u>	<.005				<.005			
Zinc	< 005	1. 1. IV	· · · ·		<.005	in sector		12 - St. A A	<.005			14.200 C	<.005		1.100	
Diss. Alumínum	<.2		<.2		<.2	1	<.2		<.2		<.2	j	<.2		<.2	
Calcium	12.8		7.96		6,54		3.42		12.4		6,18	i	10.1		7.6	
Соррег	<.01		<.01		<.01		<:01	neer se	<.01	14 m. –			<.01	an a	<.01	
Iron	<.03		<.03	i .	<.03		<.03	i —	<.03		<.03		0.03		<.03	
Lead	<.05		<.05		<.05		<.05	1	<.05		<.05	-	<.05		<.05	
Magnesium	2.88		1.75		1.49		0.74		2.83		1.28		2,96		2.06	
Manganese	<,005		<.005		<.005		<.005		<.005		<.005		<.005		<.005	
Zinc	<.005		<.005		<.005		<.005		<.005		<,005		<.005		<.005	
Oil and Grease					1											

QUINSAM COAL CORPORATION

PARAMETER		COME	CREEK			TSABL	E R.@			COUG/	RC,U			COUG	AR C.@				COWIE EEK	
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Conductivity (umhos/cm)	35.0		50.0		21,0		76.0		29,0		<u> </u>		36.0		55.0				I .	
Total dissolved solids	. 16		28		10		23		13	-	l .		16		25					
Haidness	14.6	nê tertir	20,6		8.28	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	13,8		12.6	3 - S.,	1.00		14.7	82 ° Y	21.1					
PH	7.14		7.3		6.98		7,18		7				7.08		7.26		i		1	
Total suspended solids	4		<1		25		5		8				27		2					· · · · ·
Alkalinity	14.1		21	an a	7.1		13		11.6		S. 1998		13.4	1.5818	23	- Sec. 19		100		
Sulphate	1.8		1		2,5		3	1	1,3		1	<u> </u>	2.1		2		1	1	1	
Ammonia Nitrogen	<.005		<.005		0.005		<.005		0.005			i	0.005	ļ	0.007		1		1	
Kjeldahl Nitrogen			3. 1. 1		2004		1997 60	200 S	<u> </u>	15 223	88 N 14.	• • S.	S.m.2.83	247		S. 2009		54.5	·	1.1.1.1.1
Nitrate Nitrogen	0.079		0.075		0.049		0.056	1	0.084		A	1	0.113		0.162		<u> </u>	1	1	
Nitrite Nitrogen	0.002		0,002		0,005		0.002		0,003		С	[0.004	i	<.001					<u>├</u> {
Dissolved Phosphorous	0.001	2008.2	0,002		0.001	- <u>1995</u>	0.004		0.005		- C	Sec. 2	0,008		0.002	1.000	1.5.5.1	1.7.7	1	
Total Phosphorous	0.009		0.003	· · ·	0,03		0.006		0.014		E	1	0.029		0.002			1		
Total Aluminum	<2		<2		0.5		<.2		0.3		S		0.4		<.2		i		<u> </u>	
Calcium	4.42		6.08		2.61	:	3,93	199° W 1	4.05		S.S	100	4.53	(588) (588)	5.86			1.000		<u>{</u>
Copper	<01		<.01		<.01		<.01		<.01			1	<.01		<.01	A		[······	·····	
Iron	0.11		<.03		0,68		<.03		0.27		B		0.48		<.03					<u> </u>
Lead	<.05	.). 	<.05	144 C S N	<.05		<05		<.05	12 M M M	- L <	Colected		2.5	< 05	19.86	1.1	1		
Magnesium	0.95		1.32		0.7		0.97		0.79		E		1.1		1.56		i	í –	1	
Manganese	0.008		<.005		0.033		<005		0.01				0.02		<.005					
Zinc	<005		0,009	1. A.	< 005		<005	200	<.005		1335	8 33		880 C	0.006		<u>1988 - 1</u>	<u> le contern</u>	1	<u> </u>
Diss. Aluminum	<.2		<2	1	K.2		<2		<.2				<2	Í	<.2		·	<u> </u>	<u>} :</u>	<u> </u>
Calcium	4.35		6.08		2.44		3.93		<.01				4.29		5.86					<u> </u>
Copper		1.12	< 01		K 01		<.01	2,2.07	<.01			e Seleti marti	<01	2020-78	14.01		. 1997 (j. j. j	-27 C	1	••••••
Iron	0.03		<.03	[0,05		<.03	1	0.06				0,08		< <u>03</u>					
Lead	<.05	·	<.05		<.05		<.05	1	<.05				<.05		< 05				}	
Magnesium	0.92		1,32	•	0.53	285.5		200 C	0.7	111.0763	-200 M A		0.97	300 C	1.56	1.002	<u></u>			
Manganese	<.005		<.005		<.005		<,005	<u> </u>	<.005				<.005		<.005				[
Zinc	<.005		<.005		<.005		<.005		<.005				<.005		<.005		I		ŧ	
Oil and Grease								<u> </u>					<5						1	H

Results expressed as milligrams per litre except where noted,


.

.

QUINSAM COAL CORPORATION

PARAMETER		COME	CREEK			TSABLE	ER.@			COUG	AR C.U			COUG	AR C.@				COWIE EEK	1
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Conductivity	39		44	[[*]	40		440	1	ŀ		1		43		39	<u> </u>	25			T
Total dissolved solids	. 17		19		17		220		1	<u> </u>	1		18		18		10			+
Hardness	15.4	8. Y	17.9		12.2		55.6	1.0-46	1.00.000	- 1	1.18,995		17,8		18,7	80 N	9.72		12.2.2.2	
РН	7.32		7.35		7.19		7.09	1					7.31		7.38		7.26			1
Total suspended solids	1		1		1		4	1					1		1		7	·	1	
Alkalinity	16	8 N. 17.	19		× 12	<u></u>	10	1.2.2.2		1.000	1	S	16		16	18/38	ST 10			
Sulphate	1		<1		2		18	T	1	 			1		<1		Í<1		1	· ···· · ···
Ammonia Nitrogen	<.005		<.005		0.007		<.005	i					<.005		<.005		<.005			
Kjeldahl Nitrogen	1. 1 × 1	4445	0.08	- 26.co.38	87 S. F. B		0,11	1. N. N.	100 v.	100 M 100	C. down	<u> </u>		S 8	0.09	3.338-4	1.	· .	terre e	
Nitrate Nitrogen	0.086		0.078		0.078		0.033	1	1	ľ			0.175		0.115		0.065	1		
Nitrite Nitrogen	0.004		0.011		0.002		0,009						0.006		0.002		0.001		}	
Dissolved Phosphorous	0.002		<.001		0.002		<001	1.5.1.1		1.000		66.3663	0,002	dan a	<,001	5	0.002			
Total Phosphorous	0.003		<.001		0,003		0.004			l	· · ·		0.003		0.001	<u> </u>	0.002		[
Total Aluminum	<.2		<2		K2		<2		· · · ·		1		<2		<.2		<2			
Calcium	4.46		5.19		3.71	<u> </u>	7.42				1	ari 10.000	5		5.38		2.94	+		.
Copper	<.01		<.01		<.01		<.01	Î			1		<.01		<.01		<.01	1		
Iron	<.03		<.03		0.04		0.03				1		0.06		<.03	· · · · · · ·	<.03	<u> </u>		
Lead	<.05		<.05	ar er sy	<05	: * * * * * * * * * * * * * * * * * * *	<05	5.20	1.348	1000	1.250		< 05	yzę XM	< 05	51.5.5 AM	<05	· · · ·	100	
Magnesium	1.04		1.2		0.88		8,99	1	1		<u> </u>		1.33		1.3		0.63			
Manganese	>.005		<.005		<.005		<.005			1		[<.005		<.005		<.005			
Zinc	<.005		<.005		< 005		<005			54 C	1111000	10	<,005	a serie de la	<.005		<.005		1	1
Diss, Aluminum	<.2		<2		<.2		<2		1				<2		<2		<2		}	
Calcium	4.46		5.19		3.52		7.42						4.95		5.38		2.87		<u>}</u>	11
Соррег	<.01		< 01		<01		< 01		88877				<.01	÷	<.01		<.01	1	<u></u>	<u> </u>
Iron	<.03		<.03		<.03		<,03		1				0.04		<.03		<.03	1		******
Lead	<.05		<.05		<.05		<.05						<.05		< 05		<.05			ŀ
Magnesium	1,04		4.2	Second Second	0.84		8,99	1947 - C.Y.	2 - 50	2000			1.32				0.62			9.8527
Manganese	<.005		<.005		<.005		<.005	1					<005		<.005		<.005	1		· ·
Zine	<.005		<.005		<,005		<.005				·		<.005		<.005		<.005			

Results expressed as milligrams per litre except where noted.

1

PARAMETER		COWIE	ECREEK	¢,			COWIE EEK			COUG	AR C.@			KM 4 (CREEK				UARY EEK	
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Conductivity (umhos/cm)	34.0		34.0				34,0		37.0		36.0		19.0		19.0	(28.0		27.0	
Total dissolved solids	22		15			[15		30		17		10		<10		18		12	
Hardness	15,2		13,9	1986au -	<u>;;</u>		12.1	3.0.1	15.3	2.11	14.8		7,4		6,58	1.1.1	11		11	· · · · · · · · · · · ·
PH	7.24		7.03				7.19		7.18		7.12		6,94		6.79		7.01		6.86	
Total suspended solids	4		<1			i	<1		<1		1		<1		1		<1		1<1	
Alkalinity	15		14			12000	15	1.000	15		15	75000000	6		7	0.000	12		1.11	
Sulphate	1		1				1		1		2		1		1		1		1	
Ammonia Nitrogen	0.008		<.005			<u> </u>	<.005		<.005		<.005		0.008		<.005		<.005		<.005	
Kjeldahl Nitrogen					·	i kati kara			1000 T			70388980	220011	<u> </u>		20863		: -	1	
Nitrate Nitrogen	0.059		0.048				0.035		0.119		0.121		0.036		0.033		0.029		0,024	
Nitrite Nitrogen	0.001		0.001			l I	0.001		0.001		0.003		0.002		0.003		0.001		0.001	
Dissolved Phosphorous	0.002		<.001	· 8	지 않는 것은 것을 했다.	1.	0.003	74. J.S.S	0.001	:	<001	Sector No	0.003	2. Z,Č	0.003	282960	0.002	· · · ·	0.001	
Total Phosphorous	0.014		0.019				0.005		0.004		<.001		0,006		0.005		0.003		0.004	
Total Aluminum	<.2		<2				<.2		<.2		<.2		<.2		<2		<.2		<.2	
Calcium	4.48	1999 B	4.17				3.57	A to be	4.69		4.29	381.94°	1,97	1.1.1.1	1.76	7.4he s	3,11		3,36	
Соррег	<.01		<.01			[<.01		<.01		<.01		<.01		<.01		<.01		<.01	
Iron	0.09		<.03				<.03		0,05		0.06		0.13		0.08		0.04		0.05	
Lead	<05		<.05			S. 21 1.12	< 05	. 's.	< 05		<.05		<.05	58 M2 ~	<.05	1.1.1	< 05	20. J. I.	<.05	
Magnesium	0.97		0.94			1	0,77		1.18		1,05		0.6		0.53		0.8		0.82	
Manganese	0.005		<.005				<.005		<.005		<,005		<.005		<.005		<.005		<.005	
Zinc	0.009		<,005	2000 S	: 11	1.10	<.005	· · · · ·	<.005	$ < _{L^2_{p,1}} \leq $	<,005		0.009	200428	< 005	1 1 1 I	< 005	2010	<.005	
Diss. Aluminum	<2		<.2				<.2		<u><.2</u>		<.2		K.2		<.2		<.2		<.2	
Calcium	4.48		4.1				3,56		4.31		4.19		1.97		1.76		3.11		3.12	
Copper	<01	(# 28	<01		10.0000-001	11. Y N. 2	< 01		<.01		< 01	4. est 1. 4	<.01	2010	<01	200 A.S.	<01		<01	
Iron	<.03		<.03				<.03		<.03		<.03		0.06		0.08		<.03		0.03	
Lead	< 05		<.05				<.05		K05		<.05		<.05		<,05		<.05		<.05	
Magnesium	0.97	The set	0.9			1 1.5 2	0.77	- N	1,11	5.5.55	1.04		0.6	د. د برور به	0.53	S. Kelow	0.8		0.77	1.1.1
Manganese	<.005		<.005				<.005		<.005		<.005		<.005		<.005	1	<.005		<.005	
Zinc	<.005		<.005			· · ·	< 005		<.005		<.005		<.005		<,005		<,005		<,005	
Oil and Grease																			<u> </u>	

Results expressed as milligrams per litre except where noted.

<u>.</u>

PARAMETER		tsabi	.E R. @			SAMM	Y CREE	C	(GRADE	CREEK	1		GRADE	CREEK	2
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	з	4
Conductivity (umhos/cm)	29.0		30.0				59.0		<u> </u>		16.0		T		18.0	
Total dissolved solids	24		13			-	26				<10				<10	<u> </u>
Hardness	10,6	2000 - Nogeli	10.1		18 A 19	1	24.4		1997, N. 1998	X		.			5,6	
PH	7.1		6.95	1			7.31			1	6.61		1	<u> </u>	6,73	
Total suspended solids	<1		<1				2		l	1	2	<u></u>	╠────		1	
Alkalinity	10		1	289			27	1.1875	N (1984)		6	1.387	1998 N	1222.4	 7	
Sulphate	1		2		[1	1 1				1	2.1.000.001.02		9 8377 A.299	l<1	
Ammonia Nitrogen	<.005		<.005				<.005	 	·		<.005		 		0.027	ł
Kjeldahl Nitrogen	12.00			8. se -	1	1997	5		\$\$\$\$	<u> (</u>						
Nitrate Nitrogen	0.058	<u> </u>	0.056			<u> </u>	<.005			i saare	<.005	<u> </u>	<u>, 1</u> , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	<u> </u>	<.005	
Nitrite Nitrogen	0.001	1	0.001			í	0.002				0.003		╏─────-	<u> </u>	0.002	<u> </u>
Dissolved Phosphorous	0.002	2-85 ° C - 1	<.001	S	See.	1.50	0.003				0.003	Nille Al	7.75%			
Total Phosphorous	0,003		0.002	[<u> </u>	<u> </u>	0.004				0.005	States -		<u> </u>	0.007	. ·
Total Aluminum	<.2		<.2	<u> </u>			<.2	<u> </u>	<u> </u>		<.2			·	<.2	
Calcium	3:15		2.96				7.55				1.35			1 3	1.61	
Copper	<.01		<.01				<.01				<.01			<u> </u>	<.01	<u></u>
Iron	0.04		<.03	·	İ		<.03		·		0.04	~·		<u> </u>	0.1	
Lead	<.05	<u> </u>	<.05	1	3.5	× .	<.05	<u>.</u>			<.05				<.05	
Magnesium	0.72	<u></u>	0.66	hainii dhanna a		<u> </u>	1.46		N		0.42		<u> </u>		0.49	<u>.</u>
Manganese	<.005		<.005				<.005			<u> </u>	<.005		├ ────	<u> </u>	<.005	
Zine	<,005	12-82	<.005	967 . T	×	<u> </u>	<.005		0 Y . 68	200	<.005				<.005	
Diss. Aluminum	<.2		<.2			[·····	<.2				<.2	<u> </u>	17 - A. J	<u></u>	<.2	
Calcium	3.09	••	2.96				7.39				4.1				1.47	
Copper	<.01						1<.01		1		201					
Iron	<.03	*****	<.03		<u> </u>		<.03				<.03	a ar sa ta a		nang para	<.01	
Lead	<.05		<.05	••••			<.05				<.05 <.05					
Magnesium	0.7	1000 - 1975 - 1975 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 -				28 J.			11 (11 (Sec. 20))		0.9	1 - <u>1</u> 72	1		<.05 0.47	
Manganese	<.005	<u></u>	<.005				<.005		1.11.000		<.005		angla et i i			
Zinc	<.005		<.005				<,005				<.005				<.005	
Oil and Grease		·									2,000			<u> </u>	<.005	

*

•

•

.

PARAMETER		COWIE	CREE	C			COWIE EEK			COUGA	\R C.@			KM 4 (CREEK				UARY EEK	
	1	2	3	4	1	2	3	. 4	1	2	3	4	1	2	3	4	1	2	3	4
Conductivity (umhos/cm)			45.0				44.0				47.0	[}		24.0		I	1	34.0	
Total dissolved solids			20				19		[20				9	1		1	13	
Hardness	1. 61. 5 000		19	- 11 (AB	33 C	19	20,1	N (14	336.00	· · · ·	19.5	8-8 <u>-</u> 8-1-8	1. See 2.	397 AN	8.91			1	14.2	
PH			7.45				7.41				7.43				7.09				7.08	
Total suspended solids			1				<1				<1		1		3		í		<1	
Alkalinity			20	the cost	1.22.58	1000	20	2580 m			×× 20	24	<u> </u>	18.2 Gé	8		1.1644	1	14	1.1
Sulphate			1				<1				1				1				<1	·
Ammonia Nitrogen					i —												1		1	
Kjeldahl Nitrogen	1 <u>6.</u>		1. 12. 1		1.000	te til se s	Sec. 67		F 54	112.08.05		i n yakiri	292 W	e (*)	1	· · ·		1.11		
Nitrate Nitrogen			0.038				0.034				0.084			·	0,027		i	1	0.038	
Nitrite Nitrogen					-		1					1					i	Í		
Dissolved Phosphorous	14.27		<.001	S.#%		: •	<.001	1 e e 14	1	1	0.001	\$ 6.22		15.133	0.003	1.1.2	2330 -	1	0.001	
Total Phosphorous									-							· · · ·	ì	1		
Total Aluminum			<.2		-		<.2	1			<.2		(0.3		1	1	<2	
Calcium		i yikeri	5.78	599 F. S.	100	ala ser	5.07	1.1.2.446	9 		6,48		1944 (marg	1	2,5	895 t t s	1.1.1	1. S	4.14	
Copper			<.01		1		<.01				<.01				<.01		1		<.01	
tron			<.03				<.03		i		<.03		1		0,22			(0.03	
Lead	1 A A	1	<.05				<.05				<,05		1	1 Cariban	<.05	1.2.200		1	<.05	·
Magnesium			1,28				1.24		1		1.38				0.73			1	0.99	
Manganese			<.005				<.005				<.005				< 005			l I	<.005	···
Zinc		100	<.005	2.90 SA	$0 \le \infty$	44,1,000	<,005	1 . A	Carana n		<,005	S. 49		9 N. 10	<.005	19702°0	Que a		<,005	9 N N
Diss. Aluminum			<.2			1	<.2				<.2				<.2				<2	
Calcium			5,56				6.02				4.07				2.41				4.07	
Copper	<u> </u>		<.01	14 1 Car	23	1.11 \	< 01		N ().		<.01	:	2.5 7.5		<.01		1. X .		<01	· · ·
Iron		ł	<.03				<.03				<.03				0.07		,		<.03	
Lead			<.05				<.05				<.05		1		<.05		· · · ·		<.05	
Magneslum	n feisiaí i		1.23		<u>ja 1987</u> 00		1.23			an chair a		Aser to	Set worked	· · · · · · · · · · · · · · · · · · ·	0.7		1	1		
Manganese			<.005				<.005				<.005				<.005				<.005	
Zinc			<.005				<.005				<.005				<.005				<.005	·
Oll and Grease																		<u>;</u>		

Results expressed as milligrams per litre except where noted.

•

ж

FOR THE MONTH OF FEBRUARY 1991

PARAMETER		TSABL	.E R. @			SAMM	CREEK	(GRADE	CREEK	1	1	GRADE	CREEK	2
	1	2	з	4	1	2	3	4	1	2	з	4	1	2	3	4
Conductivity (umhos/cm)			37.0	ſ			90,0		1	T	20.0			T	21.0	
Total dissolved solids			15	1			52		[· ·	10		╏╼╼╺	1	<1	
Hardness	1.000		12.6				40,7				7	0.2840		12.20	7.91	
PH			7.25			1	7.69		<u></u>		6.97	<u> </u>		1	7.03	
Total suspended solids]	1		÷		1		(2				7	
Alkalinity		. Sec.	<u>ె 12</u>			14 July	44		States of the second	18773		11	1000	3.82 -	8	· · · · ·
Sulphate			3			1	11				<1	<u> </u>			1	
Ammonia Nitrogen		1				1		<u> </u>							<u> </u>	
Kjeldahl Nitrogen		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	See	Sec.	2822	X.2088			17 A.		· · · · · · · · · · · · · · · · · · ·	Server as	9-000 - T	1000 N		N AN AN
Nitrate Nitrogen			0.049			1	<.005			1	<.005		, ··· ,	1	0.008	11.000
Nitrite Nitrogen			1				1			· · · · · ·				 	0.000	
Dissolved Phosphorous	7	we i	0.002			N	<.001	×)	1. 897 - x.		3896	898° 1			0.002	:
Total Phosphorous						<u> </u>	1								0.002	• •
Fotal Aluminum			<.2				<.2				0.2				<.2	
Calcium	·		3.82				12.4				2		- 60 3 07		1.91	
Copper			<.01			1	<.01				<.01			•	<.01	
Iron			<.03		.		<.034		·		0.13		<u> </u>	┨───	0.07	
Lead	25 M .	5., 1987	<.05		X	1.48 M	<.05		S			4880 C.Z			<.05	
Magnesium			0.79	1			2.37	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		laiideana at	0.59				0,6	، دەنىتە
Manganese			<.005				<.005				0.006		┣━━━━	<u> </u>	<.005	
Zinc	11.00	()>>+\})a	<.005	1. S. S.			<,005	CARAMET N	24/226	10.229	<.005			<u> </u>	<,005	<u></u> ;
Diss. Aluminum			<.2	····			<.2			1	<.2				<.2	
Calcium			3.73			(12.4				1.88		<u>├</u>		2.1	
Copper			<.01		1999 B	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<.01	S. 2. 19	S. 888		<.01				<u>≪.01</u>	
Iron			<.03			1	<.03	;			<.03	2110 - <u></u>		1 1917	0.05	
Lead			<.05			<u> </u>	<.05				<.05				<.05	
Magnesium			0,8	7				Second 1	<u></u>			8 <u>7 7 8</u>		<u>.</u>		
Manganese			<.005				<.005	···· ·			<.005	5.299°3		<u></u>	<.005	
Zinc			<.005			···	<.005		1	· · · · · · · · · · · · · · · · · · ·	<.005				<.005	
Oil and Grease									<u>├</u>						1.000	

Results expressed as milligrams per litre except where noted.

۲

•

PARAMETER		COMIE	CREE	К		UPPER CRI	COWIE EEK			COUGA	\R C.@			KM 4 (CREEK			JANU CRE		
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Conductivity (umhos/cm)		38,0				38.0				42,0			•	22.0				31.0		
Total dissolved solids		18		1		17				18				<10			1	14		
Hardness		17.8				18.1		32 %	286	18.3		200		8,51		<u> </u>	418,2335	13.9		35.2311
PH		7.26				7.59		1		7.36			, <u></u>	6.9		1	1	7.28		
Total suspended solids		1				<1		1		<1		1	}	3		<u> </u>	1	<1		
Alkalinity		18	1.22		1. S. MAR	18	S-800	120.00	2000 - C	18	8869 - I	1.00X	X	. 9	783 S	1 X 200			78.1.Z.	7 I
Sulphate		1				<1				<1				1	<u> </u>			ব		<u> </u>
Ammonia Nitrogen		0.007				<.005				0.011			·	<.005		1	i	0.007		
Kjeldahl Nitrogen	1990) A	1 1 1 1 1 1 1 1	55.57 C	1	1922	1	100 C		<u> </u>		Sec.	500000	X	1.2.2.8	223	1 238			1887.ST	
Nitrate Nitrogen	{	0.042				0.04		<u> </u>	<u> </u>	0.09				0.031	1			0.035		
Nitrite Nitrogen		0.003				0.002	1			0.002				0.003	1			0.002		
Dissolved Phosphorous	11.835	0.001		8	N X	<.001		2007 °SE	X	0.002	P 088	<u> (* 18</u>	. 23	0.002		827777		0.001	मरस्ति	
Total Phosphorous		0.004				<.001				0.003		<u> </u>		0.007			,	0.004	<u> </u>	·····
Total Aluminum		<.2			-	<.2				<.2			-	<.2	ŧ	·		<2		
Calcium	1977 A. 1944	5.33	1.5	Same	0.080	5.37	, der en	1.000		5,18	5669 (J. 1976) 1976 - 1976 (J. 1976) 1976 - 1976 (J. 1976)	S	×		1	4.30	1987 C	4.02	07 Y Y	
Copper		<.01		,	1	<.01				< 01				<.01	<u> </u>			<.01		
Iron		0.03	1			<.03				0.03				0.13	·			0.03		}
Lead	20.00 M	< 05	Sec. 201. 1	1 m m	Sec. 12.2	<.05	087245	2 1 22	199 J. 18	< 05			320000		23800 M		S. Ash			
Magneslum		1,15	ì			1.15				1.31				0.68				0,95		<u> </u> [
Manganese		<.005				<.005				<.005				<.005			}	<.005		
Zinc	. X317	< 005			10	<.005	. S			<.005		8-00 F S		<.005		1.0990		< 005		
Diss. Aluminum		<2		1	1	<.2		· · · · ·) 	<.2		<u> </u>		<2		<u> </u>		<.2		
Calcium		5,24		1		5,37	<u> </u>			5.18				2.29				3.98		í
Copper	1.1.1.S.X	<01	N 15	18.000	1999 - XV	<.01	· · · · * /	···		<01	2.20		8		Sp	14.500	1977			
Iron		0,03		1	1	<.03				0.03				0.13				<.03		
Load		<.05	· · ·			<.05				<.05				<.05			· · · · ·	<.05		
Magnesium	Alessia d	1.15	1.000		<u> </u>			2289 - C	17.200				2.688	0.68				0.95	· · · · ·	
Manganese		<.005		1		<.005				<.005				<.005		[<.005	·	i
Zinc		<.005	i	1	1	<.005				<.005		l		<.005				<.005		├ ──┤
Oll and Grease		1		1	<u> </u>												———	-,000		

Results expressed as milligrams per litre except where noted.

.

TSABLE RIVER SITES FOR THE MONTH OF MARCH 199

PARAMETER		TSABL	E R. @			SAMMY	CREEK	C C		GRADE	CREEK	1		GRADE	CREEK	2
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Conductivity (umhos/cm)		39,0			-	70.0			T.	18.0		· ·	<u>,</u>	19.0	-	<u>_</u>
Total dissolved solids		17			1	34				<10			i.	<10		
Hardness	1.1.20	13,7		5900 - C		34,5	3			6.81	93.,	5		7,44		÷
PH		7,38	}	1	1	7.54		····		7.08		Í –	}	7,28		
Total suspended solids		<1				<1				5	·		1	2		
Alkalinity	3892 N	a	301 X X X			36	9.00°%,			7	an a			7	x. ²	. : .
Sulphate		2	1			<1		1		1				1		<u> </u>
Ammonia Nitrogen		<.005				<.005		[¹		<.005				0.008		
Kjeldahl Nitrogen			N. 198		****	845	5.988 V					¥0 ~			2. S S	<u> </u>
Nitrate Nitrogen		0.047				<.005		<u> </u>		<.005	<u>in recur</u>			<.005		·
Nitrite Nitrogen		0.002				0.001	<u> </u>			0.003			il	0.002		·~
Dissolved Phosphorous	2 N. M.	0.002		100 m	11 20	0.001	Constant of the second s	100	1.58	<001		Y ang.	1.1.1.1	0.001	····	1.11
Total Phosphorous		0.003)	0.002		· · · ·	╢╴╴╴╴	0.005		<u> </u>		0.003		
Total Aluminum		<.2				<.2			l ·	<.2				<.2		
Calcium		. 4			1. A C	10.5			N 16 88		30. 40 m	35		1.97	540 ⁰⁰	
Copper		<.01				<.01	[].		1	<.01				<.01		
iron		0.03				<.03			(<u> </u>	0.08				0.12		
Lead		<.05				<.05	19 A		1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -	<.05	85.er	<u>79350</u> 8		<.05	10 <u>2</u> 111	
Magneslum		0.91	{			2.01				0.54			(0.61		
Manganese		<.005				<.005			·····	<.005				<.005		
Zinc	2.5	<.005			820 E.	<,005	1.195		- N 333	<.005		A Second	and a start of the	<,005	<u>.</u>	•.
Diss, Aluminum		<.2		_ _		<.2				<.2				<.2		
Calcium		4				10.5			i	1.85				1.97		
Copper		<.01				<,01		12		<.01		14.68		< 01		
Iron		0.03				<.03				0.06			<u> </u>	0.08		
Lead		<.05				<.05				<,05				<.05		
Magnesium	10000 ·	0,91				2		<u>. 19</u>	1997 V	0,53	- 19 ja	7.03%		0,61		3
Manganese		<.005				<.005				<.005				<.005		
Zinc		<.005				<.005				<.005				<.005		
Oil and Grease	}					· · · · · · · · · · · ·			-							

Results expressed as milligrams per litre except where noted.

.

APPENDIX C

.

CLIMATE DATA

~

CAMPBELL RYER A	HXL HXL		uua Mua	аря Аул	1444 1441	JUN JUN	JUL JUL	ADG NOV		001 001	NOV			
46° 87° H 325° 18° W 105 m Daty Mastern Temperature Daty Mastern Temperature Daty Mastern Temperature Daty Temperature Master Masternes Temperature Years of Decord Extrans Matheman Temperature Year of Proceed Date To Proceed Date To Proceed Date To Proceed Date To Proceed Constant Date State To Proceedings Years of Proceed Constant Date State State Years of Proceed Constant Date State State State Years of Proceed Constant Date State State State Years of Proceed	310 11.2- 11.2- 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.	-1.5 2.8 19.0 18 -17,8 18 18 18 18 19.0 23.9 143,7 18 24,4 24,4	8.7 -3.3 3.9 0.8 30,4 18 32,4 12,4 12,4 12,4 136,7 41,3 60,5 18	120 18 7,1 08 27,2 14 -4,0 15 87,1 2,1 9,1 9 19 19 11,4	4,7 38.6 0.8 18 -2.2 18 -2.2 18 43.0 20.0 20.0 20.0 18 20.0	19 8 80 14 17 26,9 -0,1 15 47,7 9,0 47,7 37,3 37,3 10 0,0	232 100 18.3 1.1 37.2 18 2.2 18 37.4 2.3 7.4 2.3 7.4 2.3 7.4 2.3 7.4 0.0 87.4 2.3 7 0.0 0.0 0.0	2277 10 11.3 1.3 27,6 14 1,7 14 1,7 14 1,7 14 15 14 20,8 20,8 20,8 20,8 20,8 20,8 20,8 20,8	12,0 1.3 30,0 16 -7,3 16 98 98 98 98 98 98 98 98 98 98 98 98 98	13 0 3 2 13 4.0 13 -7.0 15 15 7 15 7 15 7 15 7 15 7 15 7 15 7	6.4 4.0 1,1 17,0 14 -17,2 14 105,0 13,0	-1.4 1.1 2.4 1.2 1.0 -12,3 1.6 20,2 30,2 30,2 30,2 30,2 30,2 30,2 30,2	2.1 8.2 9.5 27.8 -23.9 1254.8 1408.8 214.9 84.8	8 · · 8 4 9 8 9 8 9 8 9 8 9 9 8
Deview Procession in 24 hours Years of Record Days with Rein Days with Procession Days with Procession	16 79,7 18 18 14 51	18 12,7 19 14 2 10	16 40_5 18 15 2 56	18 44.9 18 12 12 12 12	18 422 18 50 9 19	18 37,3 19 10 9 10	18 45,7 18 7 9 7	38 29,6 29 3 9 8	16 428 16 19 0 10	18 457 13 18 0	15 75.3 16 17 1 18	15 84,8 13 17 4 20	54.8 190 19 192	1
COUNTENAY APATIN 128°21W 24 m Cally Marketon Temperature Daily Michinen Temperature Daily Temperature Samdard Covinton, Daily Temperature Zetrone Medicule Temperature Years of Record Extrans Marketon Temperature			ı											
Yeers of Peccré Part-ful Distribuil Tobel Principitation Blanderd Devices, Total Principitation Crosses Related In 34 hours Yeers of Peccré Crosses Discont Crosses di Scont Crosses di Scont Crosses di Peccré Crosses di Peccré	178.4 43.7 124.3 124.3 102.1 30 81.3 30 102.1 30 102.1	145.2 18.4 184.9 97.4 97.4 90.8 30 90.8 30 90.8	120,1 11,5 14,9,3 93,4 76,7 36,8 36,8 36,8 36,9 26,7 26,7	73.1 R1 71.3 54,1 74,9 23 24 24 24 24 24 24 24 24 24 24 24 24 24	44.8 9.0 47.8 18.8 54.1 30 9.9 34 34 34 34	44.2 9.0 44.3 27.8 34.5 36 9.9 34.5 34.5	33,7 99 13,7 34,6 37,1 38 99 38 27,1	44 0 0.0 44 0 54 7 54 3 54 3 54 3 54 3 54 3 54 3 54 3 54 3	01 00 03 04 04 04 04 04 04 04 04 04 04 04 04 04	156.7 9.3 128.9 62.4 81.8 27 7.4 56 81.0	227.9 10.7 394.8 112.4 96.1 37 44.7 37 84.1	2)1.7 27.8 349.8 96.2 102.9 20 43.7 37 102.9	5345.8 1123 5902.6 1962.9 1962.9 87.3 102.9	•
i eers at coccin Days with Field Days with Procession Days with Procession	38 17 4 19	38 15 12 13	30 14 1 17	26 24 8 16	26 13 8 15	24 11 0 11	51	я 1 1	74 19 0 19	37 18 8 18	37 18 1	26 15 3 19	142 11 140 -	:
ovalcum a faih alsearch	HAL HAL	fer Fev	HAR MAR	ልምና ሊህየት	мат Мат	JUN JUN	J.K.	DUA TUGA	sep Sept	001 100	HCA			CODE CODE
48° 2474 124° 2774 8 m Dely Mastrum Temperature Dely Medicus Temperature Dely Temperature Blandard Devieton, Dely Temperature Rationa Madesum Temperature Years of Decord Externe Mastrum Temperature	43 -0.4 7.5 1.9 34.4 10 -15.8	72 63 43 32 163 19 -74	\$9 13 54 63 18.0 19 -4.3	123 24 84 93 93 93 93 94 94 94 94 94 94 94 94 94 94 94 94 94	16.4 #8 \$1.8 \$7 29.3 17 0.0	12.1 2.3 74.3 1.2 50.0 13 2.4	220 11.4 18.7 03 31,1 18 5.0	21.4 15.3 14.5 5,8 51,1 19 4,4	16.3 8.8 13.4 9.3 87.2 10 9.9	13.8 15 13 07 228 19 -13		8-2 1.1 2.7 1.7 14.9 19 -14.6	17,2 82 92 94 51,1 •18,8	•
Yees at Pactor6 Particle Browne Total Erwighteten Standard Davieton, Total Produktion Orsitest Particle in 24 hours Yees at Record Orsitest Pactoria Orsitest Pactoria Orsitest Pactoria Orsitest Pactoria	10 1004 204 204 102 1172 102 1173 18 420 13 1173 18 420 10 10 10 10 10 10 10 10 10 1	43 1914 36.0 61.7 18 48,7 19 63,7	1世 9552 25 25 25 25 25 25 25 25 25 25 25 25	12 81.4 9.4 97.7 54.8 29.5 17 4.8 17 29.5 17	17 44.5 40 44.4 16.8 27.7 18 9,9 19 27.7 18	34 343 54 343 184 342 34 34 34 39 342 34 31 342 34 34 34 34 34 34 34 34 34 34 34 34 34	18 29,3 29,3 21,9 21,9 21,6 19 21,6 19 21,6	59 61,8 0.0 61,8 29,9 39,1 18 0,0 19 58,1 19	18 54.8 0.9 94.8 47.3 31.6 18 6.0 21.9 31.8 31.8 31.8	19 137.3 60 137.3 81.3 72.8 19 0.0 19 77.8	2.0	12.1 239.3 79.3 64.4 19 44.7 19 84.7 19 84.4	1778.3 47.4 1317.2 219.9 117.3 49.9 117.3	:
Yeers of Fecord . Brys with Plate Days with Brow Days with Procipitation	18 16 4 10	18 18 18	18 18 1	12 12 12 12	19 0 18	•	4 0 6		10 10	19 18 18	17 3 19 -	19 20 20	183 # 138	•

(

• •

.

ATMOSPHERIC ENVIRONMENT SERVICE SERVICE DE L'ENVIRONNEMENT ATMOSPHERIQUE

RAINFALL INTENSITY-DURATION FREQUENCY VALUES INTENSITE, DUREE ET FREQUÊNCE DES PLUIES

• DATA INTEGRATION DIVISION LA DIVISION DU-TRAITEMENT DES DONNEES . · • •

GUMBEL - METHOD OF MOMENTS/METHODE DES MOMENTS - 1990

*********** .

1	TABLE 1	-	COMOX	: AIRPON	RT	. B.	с. [.]	• •	102	21830
	LATITUD				DE 12454			ON/ALTI		24 [°] 2
	YEAR ANNEE		•••••	15 MIN	30 MIN		2 н		12 H	24 E
	1963	5.1	516	6.3	8.9		13.7 11.7	26.4 29.7	39.6· 36.3	63.8 46.5
	1964	2.0 4.1	4.1	- 5.3 6.6	7.4 11.7	16.8.		. 37.6.	50.0	53.1
	1965	4-1 2.5	5.1. 4.6°				11.7		-42.9	63.5
	1966 1967	1.8	3.0	3.5	6.6 5.6	10.9		36.3	53.3	56.8
	1968	5.1	9.4	110	11.9	12 4	1.5.5	36.1		85.3
	1969	3.8	4.3	1 5	5.3	2 Q Q	12.2	26.2	50.0	64.8
•	1969	1.5		4.1		11 1	18 0	26.7	32.5	47.0
	1970	2.0	.2 8	3.3	5.6	7 9	18.0	21.1	33.0	57.4
•	1972	2.0	2.3	3.3	5.6	7.9 7.9	13.0	27.7	46.7	62.0
•	1973	1.8	2.8	3.3 4.1 5.3	7.1	11.7	· 18.3	33.8	41.4	72.4
	1974	2.5	2.0 A 6	5.3		8.6	15.7	29.2		72.6
	1974	4.2	. 4.8	. 5.3	5.3	8.4				59.7
•				4.1	5.8		. 9:9	19.6	29.5	41.9
•		1.8 2.3			4.8	7 4	11.2	25.9-	40.6	
	1.977	2.3	3.3.	3.3	4.8	7.4 7.8 9.9	11.6	20-3	34.1	
	·1978	1.9	2.9	3.7 7.0	4.7	9.9	11.0	30.0	44.8	
	1979	5.0	6.0	6.2	. 9.3	9.9	14.1.	24-8	36.2	
	1980	4.8	5.6	6.2	/./					
-		2.3			8.4		20.4	37.4	42.2	
		6.0		7.0		8.7		27.0	37.4	
		3.1	5.7	7.5	11.4	16.8		36.2	60.2	
		2.0	3.6	4.2	5.4	9.8 6.5	13.9	26.1	38.2	
	· 1985	1.8	2.5	2.7	3.8	6.5	10.7	23.2	39.0	
	19.86	3.0	5.4	7.2	8.4	11.2	16.8	38.0		105.8
	1987	1.8		4.0	6.3		12.1	28.9	34.3	
	1988	3.7			10.4	10.8	15.4	32.3	43.6	
	1989	2.9	4.0		8.6	10.8	12.9	25.3	37.0	
	1990	1.4	2.3	3.1	• 4.7	7.0.	13.4	26.8	50.6	85.8
	NOTE:-	99.9 Il	DICATES	S MSG D	ATA				•	
	1		ONNEES A							
•	# YRS. ANNEES	28	28	28	28	28	28	28	28	28
	MEAN	2.9	4.3	5.3	7.2	10.0	.14.6	29.0	42.9	60.4
	MOYENNE								- · ·	-
	D. DEV.	1.4	1.6	2.0	2.2	2.7	3.3	5.3 -	818	16.2
	RT-TYPE	-	÷••	2 • V			÷		- • •	
	SKEW	0.81	1.13	1 46	0.74	אד ר	1.22	0.23	0.98	1.0
DTCC	YMETRIE	V.01	<u> </u>	2.40						-
	URTOSIS	2.68	5 03	£ 32	3.01	4 28	5.04	2.52	4.19	4.1
	URTOSIS	2.00	2.03			2.20	<u>.</u>	<i>4</i>		

WARNING / AVERTISSEMENT

YEAR 1968 HAD VALUE GREATER THAN 100 YEAR STORM. EN 1968 L'INTENSITE DE LA PLUIE A DE PASSE

. -

CELLE POUR UNE PERIODE DE RETOUR DE 100 ANS DATA/LA VALEUR = 11.9 100 YEAR/ANNEE = 11.5

NOTE: -99.9 INDICATES LESS THAN 10 YEARS OF DATA AVAILABLE INDIQUE MOINS DE 10 ANNEES DE DONNEES DISPONIBLES

> ATMOSPHERIC ENVIRONMENT · SERVICE SERVICE DE L'ENVIRONNEMENT ATMOSPHERIQUE

RAINFALL INTENSITY-DURATION FREQUENCY VALUES INTENSITE, DUREE ET FREQUENCE DES PLUIES

GUMBEL - METHOD OF MOMENTS/METHODE DES MOMENTS -- 1990 ************ B.C.

÷t.

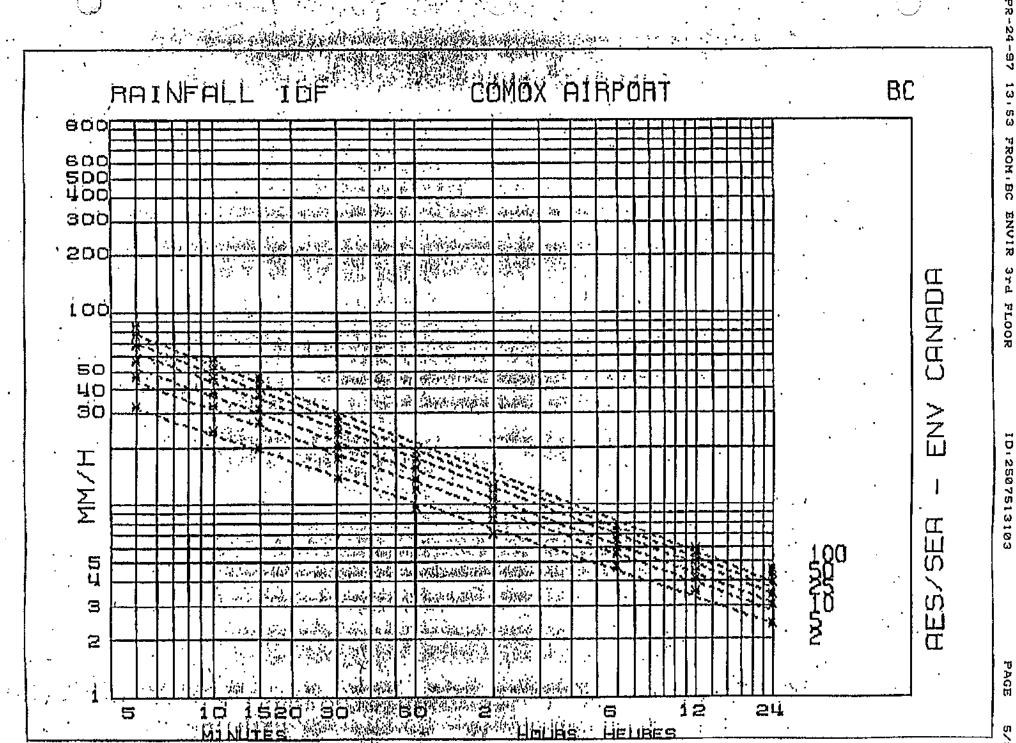
COMOX AIRPORT

PABLE 2 ATITUDE 4943 LONGITUDE 12454 ELEVATION/ALTITUDE · **** ****

RETURN PERIOD RAINFALL AMOUNTS (MI) PERIODE DE RETOUR QUANTITIES DE PIULE (MM)

	DURATION 2	5	107	25.		->100	#~ YEAF
	DUREE YR/ANS	YR/ANS.	YR/ANS	YR/ANS	YR/ANS	RYANS	ANNEES
•	5-MIN .2.7	3.9	427	5.7			ິ: 28 🖕
	10. MIN 4.0	5.5	5 ,4	7.7	8-6	·	- 28
٠.	15 MIN 34.9	6.7	75.9	9:3	10.4.	-11-5	: 28 📕
	30 MIN 6.8	818. ; ,	10.1	11.7	_13÷0	-1432	28
	13H	12.0	13:6	15.6	17.1	£;∰ <u>-</u> 6.	28
	2 H 14.0	17.0		21.4.	23.2	_CS 0	-28
	63H 28.1	. 3218		39.8	-42.7	• n .6**	.28
-	12.H 41.5	49.3		60.9	65.7		28_
	24 H 57.7	72.0	<u>~ 81.6 ~</u>	93.6	102.5	21 2 1. 3an	28

RETURN PERIOD RAINFALL RATES. (MM/HR) -95% CONFIDENCE LIMITS INTENSITE DE LA PLUIE PAR PERIODE DE RETOUR (MM/H)-LIMITES DE CONFIANCE DE


· "						•	•	• •		,		
DURATION				•				· ·				
5' MIN	•	32.3/		46.7	•	56.2		68.2		77.:	-	85.9
	+/-	5.5	.+/-	9.3	+/-	- 12.6	+/-	- 16.9	÷7-	- 22.5	+/-	23.6
10 MIN	-	24.1		32.8		38.6		45.9	•	511+		56.7
		-				- 7.6						
. 15 MIN	•	19.7		26.7	•	31.4	•	37.3		41		46.0
	+/-	2.7	+/-	4.6	+/-	- 6.2	+/-	- 8.3	+/-	• • •	+/-	11.6
30 MIN		13.7		.17,6		20.2	•	23.5		25.3	,	28.3
•	+-/-	1.5	+/-	- 2.5	+/-	- 3.4	+/-	4.6	+/-	-, =	-/-	. 6.5
' 1. H		9.6		12.0		13.6		15.6		17.1	•	18.5
	+/-	0.9	+/-	- 1.6	+/-	- 2.1	+/-	- 2.9	+/-	- • - •	•/-	4_0
2 H		7.0		8.5		9.5		10.7		1:.	-	12.5
	+/-	0.6	+/-	· <u>1</u> .0	+/-	1.3	+/-	1.7	+/-		-/-	2.4
6 н		4.7		5.5	,	6.0		5.6	ć		•	7.6
	+/-	0.3	+/~	• 0.5	+/-	0.7	+/-	• 0.9	+/•	• 1.1	+/-	1.3
15 H		3.5		4.1		4.5		5.1		۰. ۲		5.9
	+/-	0.2	+/-	0.4	+/-	0,6	+/-	0.8	+/-	- 0. •	+/ -	1.1

• •

.•

• . • .

	24.H. 2.4	. 3.0		. 4	3:19	4.	, 3	4.6
	24 H . 2.4 . +/~ 0.2	+/ 0:4	+/- 0	.5 +/-	0.7	+/- · 0.	.8 +/-	1.:0 :
)	•	ATMOSPHERI	CENVIR	ONMENT	SERVICE			·.
•	•	ICE DE L'EN		•				•
		ll Intensii Nsite, dure						
********	GUMBEL - M	ETHOD OF MC	MENTS/M	ETHODE	DES MOM	ENTS -	1990	****
· · ··.	TABLE 3	COMOX ATRPO	RT		s.C.		: 10	2183
	CATITUDE 4943	LONGITU	DE 1245	4	ELEVAT	TON/ALA	TUDE	2 <u>4</u>
*********	*****							
	INTERPOLATION EC	UATION / EQ	UATION	D'INTER	POLATIC	N: R =	ATT T	B
	$\mathbf{T} = \mathbf{T}$	IN HOURS /	TEMPS	EN HEUR	ES			
	STATISTICS		2 YR ANS	S=YR* ANS	IC YR ANS	25. YR Ans	501.YR 1 Tans	00. AN
	MEAN OF R		12.9	.17:4	20.3	24.0	26-8	
	MOYENNE DE R							
	STD. DEV. R		10.3	15.0	18-1	22.1	2520	27
	KECART-TYPE						<u> </u>	<u> E</u>
					و 1	2° 5		
	STD. ERROR		. 025	с				
		•	•		· · · · · · · · · · · · · · · · · · ·	ŧ		
	COEFF. (A) COEFFICIENT (2		10.2	13.1	15.0	17.4	19.2	20
•		-,				•		
••••	EXPONENT (B)		-0.456 -	-0,486 -	-0.500 -	0.513	5,20 -	0.5
•	EXPOSANT (B)		•	• .		•	•	•
	MEAN & ERROR		3.5	5.5	6.7	7.8	· 3.5 .	9
÷	* D'ERREUR	· · ·	•		÷ .		•	
					`		•	, ,
		÷.	•		•	•	•	
	· ·		•		ч ^с			
- ;								•••
				•				-
			•				•	
l					•			
	-							
	•				• •			

ល ιü ທ ພ FROM . BC ENVIR Эче

ID:2507513103

PAGE

()

I

							•]
	•		ATMOSPHERI CE DE /L'EN				2	1
	·		L INTENSII ISITE, DURE					· · ·
******	GI	umbel - Me	THOD OF MO	MENTS/ME	THODE D	ES MOMENTS	5 - 1990	
				•		•	· · · · · · · · · · · · · · · · · · ·	•
	•••		OURTENAY I	•				-
******	LATITUD	E. 4941. ********	LONGITU	DE 12502) 	ELEVATION	ALTITUDE.	24. 2
	•	•	· · ·	*		· · · ·	• •	
	-	• •	RETURN P	PERIOD RA	INFALL .	AMOUNTS ()	M)	
		PE	RIODE DE F	RETOUR OF	JANFITIE	s de pluit	(MM)	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
•			5		· -		• • • •	
	DURATION	2., ·	5. VD/ANG	$\frac{10}{2000}$	· 25	50.	100	# YEAR
• : .	SIMTN	-99 9	YR/ANS -99.9 -99.9 -99.9 -99.9	IR/ANS	Q	IR/ANS	IR/ANS	ANNEE
	10 MIN	-99.9	-99.9	99.9	-99:9	-99.9	-99 9	0
	157 MIN	-99.9	-99.9	99.9	-99.9	299 9	-99.9	0
	30 MIN	-99.9	-99.9	99.9	-99,9 ·	<u>.e.ee</u>	-99.29	6~
		10 2	17.0%		76.77			
• • • • •	22H		18:6	20.6	23.2	25.1	27.0	
• • •	12 H	49 2	40.5 ····	45.4 69 8	21+0	2 50 Z	60.8	
-	24-H	70.1	12.0 18:6 40.5 61.6 91.4	05.5	123.3	136.5	149.5	27
			· · · · · · · · · · · · · · · · · · ·					
·			RAINFALL F	ATES (MA	1/HR)-95			
INTEN	SITE DE L	A PLUIE PA	r periode	DE RETOU	JR (MM/H)-LIMITES	DE CONFIZ	ANCE DE
	DID STON	2 VDYANG	5 yr/ans	10 200 / 1				
	DUREE	Z IR/ANS	5 IR/ANS	S IO YR/F	UNS 25 Y	R/ANS 50 1	RANS IN	J YR/AN:
		-99.9	-99.9		.9 - e.	99.9 🦾 -	-99.9	-99.9
		+/- 0:0	+/- 010	+/- 0.	.0 ; +/-	0:0 +/-	0.0 +/-	- 0.0
			11:12	;	- · ·	· · · · ·		•
	10 MIN		-99.9			99.9 -		-99.9
•	• -	+/- 0.0	+/- 010	+/- 0.	···	0.0 +/-	+/-	- 0.0
~	15 MIN	99.9	-99.9	99.	9 -	99.9	.99.9	-99 9
			+/- 0.0					
		•	•					•
•	30 MIN	-99.9	-99-9	-99.	.9	99.9 -	.99.9	-99.9
,		+/- 0.0	+/- 0:0	+/- 0.	0 +/-	0.0 4/-	0.0 +/-	- 0.0
•	. 1 11	10.ż	12.8	Т.А.	- -	167	10 7 .	10.0
		+/- 1.0	+/- 1.7	+/- 2.	3 +/-	3.1 + / =	3.7 ±/-	4.3
•	· .							· .
-	·2 H	7.7	9.3	10.	.3 .	11.6	12.5	13.5 [.]
		+/- 0.5	+/- 1.0	+/- 1.	4 +/-	1.9 +/-	2.2 +/-	- 2.6
	6 H	<i>с</i>	. 6.7		c	0 ¢	A A	10 7 -
			+/- 0.3					10.1
	-						•	-
	12 H	4.1	5-1 +/- 0.7	5.	8	6.7	7.3	8-0
		+/- 0.4	+/- 0.7	+/- 0.	9 +/-	1.2 +/-	1.5 +/-	- 1.7
•	24 ¥	2 0	3.8	· A	л	5 1	5.7	6.2
	₩7. Åå	+/- 0.3	+/- 0.6	+/- 0.	8 +/-	1.1 +/-	1.3 +/-	
	•					*	-	- K

ATMOSPHERIC ENVIRONMENT SERVICE SERVICE DE L'ENVIRONNEMENT ATMOSPHERIQUE

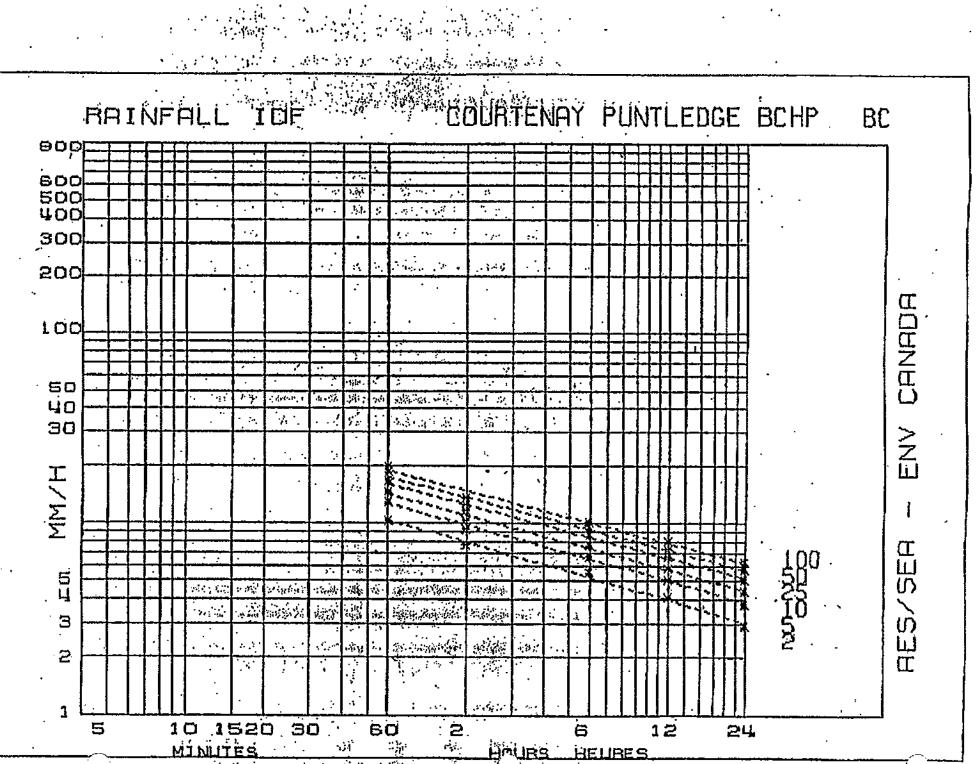
.

ATMOSPHERIC ENVIRONMENT SERVICE SERVICE DE L'ENVIRONNEMENT ATMOSPHERIQUE

RAINFALL INTENSITY-DURATION FREQUENCY VALUES INTENSITE, DUREE ET FREQUENCE DES PLUIES

DATA INTEGRATION DIVISION LA DIVISION DU TRAITEMENT DES DONNEES

GUMBEL - METHOD OF MOMENTS/METHODE DES MOMENTS - 1990


				•		_	••			
	TABLE	1.	COUR	PENAY. P	UNTLEDGE	E BCHPB.	c		102	21990
•							•		14 S 20 w	
1	LATITU	DE 4941		LONGITU	Ĵe 12502	? '	ELEVATI	ON/ALTI	TUDE	24 1
****	******	******	******	******	*******	*******	******	******	******	****
		5 MIN	10 MIN	. 15 'MIN	30 MIN	l H·	З.Н	6>H	12. H.	124.1
• •	ANNEE		• .*			: •				
•			· .							•••
	. 1964	-999	-99.9	-99.9	4.3	7.1.	13.7	31.5	41.1.	62.
	• 1955	-99.9	-99.9	-99.9	S8	10.4	12.2	27:95	્રે36.8∵	55.
••	1966	<u>-99.</u> 9	_99~9 [~]	-99.9	. 8.6 ≻	16.0.	16.0.	31.0**	49.0	:79
•	1967	-99:9	-99.9	-99.9			15.2	30.7 39:4	. 44.4	51.:
	1968		-99.9	-99.9.	9.9	9.9	14.0.	39:4	69.6	124.:
	1969	-99.9		-99-9	4.8	· · / · L. ·	14.2	36.6	55.9	77.:
	1970	-99.9	-99.9	-99:9	-99.9	8.4	.13.7	30-7-3	37.6	58
÷.		-99.9	-99.9	-99.9	-99.9	7.1.	14.2	371 5	. <i></i>	07 I
<u>,</u>	1972	-99.9	-99.9	-99.9 [;]	-99.19	. 8:6	12.2	25.1	41.4	· 62.
Ă.	· <u>1973</u>	-99.9	-99.9	-99.9	-99.9	14.2	15.0	25.1	44.2	80
	1974.	-99.9	-99.9	-99.9	-99.9	6.9	·12.7	23.9 💮	37.8.	68.
	1975	-99.9			-99.9	8.1	.15.5		48.8	63.
	1976	-99.9		-9919	-99.9	5.8	9.7	.21.8	33:5	45
	. 1977	-99.9		-99.9	-99.9	9:7	12.7	31.2		46
·	1978			-99.9		13.2	17.2		45.2	
	1979	-99.9		-99.9		10.8	11.8	28.0		65.
	- 1980	-99.9		-99.9		14.0	23.8	33.4-	43.2	56.:
•	1981	-99.9		-99.9		12.4	17.6		45.6	64.
		-99.9		-99.9		. 9.0	17.2	34.4		63.
•	1983	-99.9		-99.9		12.4	21.2		86.8	120.
	1984	-99.9		-99.9.		11.6	17.7	37.4		70
	1985	-99.9		-99.9		11.6	17.8	32.0	43.4	47.
	1986			-99.9		12.4	18.4		69.4	
					-99.9		23.0			112.
	1988				-99.9		23.0			87.
\$	1989				-99,9		17.8			
	1990	-99.9	-99.9	~99.9		12.2	17.8		33.4	20.
-		-99.9 II				-4.4	1/.0	44 + 4	72.6	121.
	101131			ANQUAN.			· .			
			MREES I	MANQORN.	123			- ·		
	# YRS.	0	0	. 0	· 6.	27	27	27	~-	~7
•	ANNEES	U	0	U	ю.,	41	27	27	· 27	27
•			00 0		-99.9	10.0		~ ~ ~	 .	~ .
•		-99.9	-99-9	-99.9	-99.9	10.9	16.0	34.4	51.5	74.
	MOYENNE	<u> </u>	~~ ~	·	<u> </u>			• •		
	STD. DEV.	-33.3	-33.3	-33.3.	-99.9	2,9	3.5	8.4	14.0	Z4.
•	ECART-TYPE	~~ ~~	~~ ~~	~~ ~~						
	· SKEW	-33.30	-99.90	-22.20	-33.30	. 0.30	0.52	1.03	1.14	1.
	DISSYMETRIE				00.00	-	• • •	- <u>-</u>		-
	KURTOSIS	-22.20	-33.30	-22.20	-23.30	2.93	3.18	3.87	3.69	. ک
	KURTOSIS									•

NOTE: -99.9 INDICATES LESS THAN 10 YEARS OF DATA AVAILABLE INDIQUE MOINS DE 10 ANNEES DE DONNEES DISPONIBLES

PAGE 8/9

RAINFALL INTENSITY-DURATION FREQUENCY VALUES INTENSITE, DUREE ET FREQUENCE DES PLUIES

	TABLE 3	COURTENAY PUN	NTLEDGE BCH	PB.C.		10	2199
	LATITUDE 4941	LONGITUDI	12502	ELEVA	PION/AL	TITUDE	24
*******	*************	************	**********	********			
	INTERPOLATION E	OUTATION / FOID	TON D'TNT	ERPOLATI	ON: R =	A * T *	* В.
	R 🛥 RAI	NFALL RATE /]	INTENSITE D	e la plu	IE (MM	/HR) "	
	T = TIM	E IN HOURS / 1	remps en he	URES			
•	•			· · · · · · · · ·	•		
						EO VD	00 V
	· STATISTICS		27.YR 5.YR Ans Ans	, LUIR: "DNC	23 IR	ANC	- DO I
	STATISTIQUES		ANS ANS	حبيم			
••	MEAN OF R.		6:1 T.5	8:5	9:7	10.6	11.
	MOYENNE DE R	· · · · · · · · · · · · · · · · · · ·					· · · · ·
			م المراجع معالي المراجع br>مراجع المراجع ال	به دینی میشوند. 		<u>.</u>	
			· · · · · · · · · · · · · · · · · · ·				_
	STD. DEV. R.		2.9 3.5	4-0	4.5	4.9	5.
	ECART-TYPE.						
			7				
				0 A	0.6		
	SID. ERROR	DD			0.0.		
	ERREUR STANDA	RD					
	COEFF. (A)	• • • • • • • • • • • • • • • • • • • •	10.3 12.6	14.0	15.9	17.3	18
	COEFFICIENT (A)					
	· · · · · ·						
			· · · · · · · · · · · · · · · · · · ·				
· · · · ·	EXPONENT (B)	· _ ~ 0	1384 -d.369	-0.36Z	-0.355	-0-351	-0.34
	EXPOSANT (B)				• •	- N	•
••	· .	•					
•	MEAN & ERROR	•	3.2 2.9	3.0	3 1	3.2	3
	& D'ERREUR	•			•••		_
		•	•	•		•	
•		· · ·		•.	•	•、	
		· · .	•	•••	• •	• - •	
		• •		••	L	•	•
	•			-			•
· · · ·		•	• ·	•			
•	•	. •					
	•	-		5 •		. •	•
•			•	•			•
	•		•	• •		-	
		、 ·		· •	•	•	•

APPENDIX D

ANALYTICAL DATA

••

File No. G2832

r

		NNO 96 07 08	242 Portal 96 07 08	Iron River #1 96 07 08	Cowie Creek 96 07 08	Cougar Smith Creek 96 07 08
<u>Physical Tests</u> Conductivity (umhos/cm) Total Dissolved Solids Hardness pH Total Suspended Solids	CaCO3	-	53.4 36 21.7 7.10 2	87.3 62 38.5 7.35 1	77.4 48 34.2 7.32 4	76.1 46 33.6 7.35 1
<u>Dissolved Anions</u> Alkalinity - Total Sulphate SO4	CaCO3	15.5	13.6 9.6	38.0 4.9	38.1 1.9	37.4 1.0
<u>Nutrients</u> Ammonia Nitrogen Nitrate Nitrogen Nitrite Nitrogen Total Dissolved Phosphate Total Phosphorus	N N P P	- - -	<0.005 0.011 <0.001 0.001 0.003	<0.005 0.023 0.001 <0.001 <0.001	0.048 0.050 <0.001 0.002 0.002	<0.005 <0.005 <0.001 0.002 0.002

.

File No. G2832

÷

		242 Portai 96 07 08	Iron River #1 96 07 08	Cowie Creek 96 07 08	Cougar Smith Creek 96 07 08
<u>Total Metals</u> Aluminum Antimony Arsenic Barium Beryllium	T-Al T-Sb T-As T-Ba T-Be	<0.2 <0.2 <0.2 0.03 <0.005	<0.2 <0.2 <0.2 0.01 <0.005	<0.2 <0.2 <0.2 0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005
Bismuth	T-Bi	<0.1	<0.1	<0.1	<0.1
Boron	T-B	<0.1	<0.1	<0.1	<0.1
Cadmium	T-Cd	<0.01	<0.01	<0.01	<0.01
Calcium	T-Ca	6.49	13.7	10.1	.9.60
Chromium	T-Cr	<0.01	<0.01	<0.01	<0.01
Cobalt	T-Co	<0.01	<0.01	<0.01	<0.01
Copper	T-Cu	<0.01	<0.01	<0.01	<0.01
Iron	T-Fe	0.62	<0.03	<0.03	<0.03
Lead	T-Pb	<0.05	<0.05	<0.05	<0.05
Lithium	T-Li	<0.01	<0.01	<0.01	<0.01
Magnesium Manganese Molybdenun Nickel Phosphorus	T-Mn n T-Mo T-Ni	1.34 0.050 <0.03 <0.02 <0.3	1.07 <0.005 <0.03 <0.02 <0.3	2.36 <0.005 <0.03 <0.02 <0.3	2.40 <0.005 <0.03 <0.02 <0.3
Potassium	T-K	<2	<2	<2	<2
Selenium	T-Se	<0.2	<0.2	<0.2	<0.2
Silicon	T-Si	2.00	2.43	4.11	4.34
Silver	T-Ag	<0.01	<0.01	<0.01	<0.01
Sodium	T-Na	<2	<2	<2	<2
Strontium	T-Sr	0.013	0.051	0.023	0.021
Thallium	T-Tl	<0.1	<0.1	<0.1	<0.1
Tin	T-Sn	<0.03	<0.03	<0.03	<0.03
Titanium	T-Ti	<0.01	<0.01	<0.01	<0.01
Vanadium	T-V	<0.03	<0.03	<0.03	<0.03
Zinc	T-Zn	<0.005	<0.005	<0.005	<0.005

٠

•

File No. G2832

			7		
		242 Portal	Iron River #1	Cowie Creek	Cougar Smith
		96 07 08	96 07 08	96 07 08	Creek 96 07 08
Dissolved Me	tale				
Aluminum	D-Al	<0.2	<0.2	<0.2	<0.2
Antimony	D-Sb	<0.2	<0.2	<0.2	<0.2
Arsenic	D-As	<0.2	<0.2	<0.2	<0.2
Barium	D-Ba	0.03	0.01	0.01	<0.01
Beryllium	D-Be	<0.005	<0.005	<0.005	<0.005
Bismuth	D-Bi	<0.1	<0.1	<0.1	<0.1
Boron	D-B	<0.1	<0.1	<0.1	<0.1
Cadmium	D-Cd	<0.01	<0.01	<0.01	<0.01
Calcium	D-Ca	6.49	13.6	9.90	9.57
Chromium	D-Cr	<0.01	<0.01	<0.01	<0.01
Cobalt	D-Co	<0.01 ·	<0.01	<0.01	<0.01
Copper	D-Cu	<0.01	<0.01	<0.01	<0.01
Iron	D-Fe	0.07	<0.03	<0.03	<0.03
Lead	D-Pb	<0.05	<0.05	<0.05	<0.05
Lithium	D-Li	<0.01	<0.01	<0.01	<0.01
Magnesium	D-Mg	1.34	1.08	2.29	2.37
Manganese		0.038	<0.005	<0.005	<0.005
Molybdenun	n D-Mo	<0.03	<0.03	<0.03	<0.03
Nickel	D-Ni	<0.02	<0.02	<0.02	<0.02
Phosphorus	D-P	<0.3	<0.3	<0.3	<0.3
Potassium	D-K	<2	<2	<2	<2
Selenium	D-Se	<0.2	<0.2	<0.2	<0.2
Silicon	D-Si	2.00	2.43	4.04	4.33
Silver	D-Ag	<0.01	<0.01	<0.01	<0.01
Sodium	D-Na	<2	<2	<2	<2
Strontium	D-Sr	0.013	0.050	0.023	0.021
Thallium	D-Tl	<0.1	<0.1	<0.1	<0.1
Tin	D-Sn	<0.03	<0.03	<0.03	<0.03
Titanium	D-Ti	<0.01	<0.01	<0.01	<0.01
Vanadium	D-V	<0.03	<0.03	<0.03	<0.03
Zinc	D-Zn	<0.005	<0.005	<0.005	<0.005

File No. G4265

.

		Cougar Smith	Tsable River	Argonaut Mine Pit	Ditch 1	Ditch 2
		Upstream 96 08 19	96 08 19	96 08 19	96 08 19	96 08 19
Physical Tests Conductivity (umhos/cm) Total Dissolved Solids Hardness pH Total Suspended Solids	CaCO3	96.2 62 34.8 7.75 2	536 278 49.9 7.62 1	177 102 8.30	- - - -	-
<u>Dissolved Anions</u> Alkalinity - Total Sulphate SO4	CaCO3	45.7 1.7	26.7 24.9	72.4 17.0	2060	- 1770
<u>Nutrients</u> Ammonia Nitrogen Total Kjeldahl Nitrogen Nitrate Nitrogen Nitrite Nitrogen Total Dissolved Phosphate Total Phosphate	N N N P P	<0.005 0.06 0.098 <0.001 0.004 0.004	<0.005 0.07 0.085 <0.001 <0.001 0.002	<0.005 <0.005 <0.001 <0.001 0.003	- - - -	-
				-		

File No. G4265

	Cowie Creek	Sump @ 3 Mains
	96 08 19	96 08 19
Ca€O3	89.0 52 34.9 7.66 1	3930 - 7.55 6
CaCO3	43.9 2.1	415 1760
N N N P	<0.005 0.07 0.066 <0.001 <0.001	- - - -
P	0.001	-
	CaCO3 N N N N P	Creek 96 08 19 89.0 52 Ca€O3 34.9 7.66 1 CaCO3 43.9 2.1 N <0.005 N 0.07 N 0.066 N <0.001 P <0.001

()

File No. G4265

i.

		Cougar Smith Crook	Cougar Smith	Tsable River	Argonaut Mine Pit	Cowie Creek
		Creek 96 08 19	Upstream 96 08 19	96 08 19	96 08 19	96 08 19
<u>Total Metals</u> Aluminum Antimony Arsenic Barium Beryllium	T-Al T-Sb T-As ~ T-Ba T-Be	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 0.01 <0.005
Bismuth Boron Cadmium Calcium Chromium	T-Bi T-B T-Cd T-Ca T-Cr	<0.1 <0.1 <0.01 9.58 <0.01	<0.1 <0.1 <0.01 11.7 <0.01	<0.1 0.1 <0.01 9.19 <0.01	<0.1 <0.1 <0.01 31.2 <0.01	<0.1 <0.1 <0.01 11.2 <0.01
Cobalt Copper Iron Lead Lithium	T-Co T-Cu T-Fe T-Pb T-Li	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 <0.01
Magnesium Manganese Molybdenun Nickel Phosphorus	T-Mn T-Mo T-Ni	2.70 <0.005 <0.03 <0.02 <0.3	2.93 <0.005 <0.03 <0.02 <0.3	8.42 <0.005 <0.03 <0.02 <0.3	1.45 <0.005 <0.03 <0.02 <0.3	2.52 <0.005 <0.03 <0.02 <0.3
Potassium Selenium Silicon Silver Sodium	T-K T-Se T-Si T-Ag T-Na	<2 <0.2 6.27 <0.01 3	<2 <0.2 5.26 <0.01 2	2 <0.2 2.01 <0.01 75	<2 <0.2 2.98 <0.01 <2	<2 <0.2 4.65 <0.01 2
Strontium Thallium Tin Titanium Vanadium	T-Sr T-Tl T-Sn T-Ti T-V	0.027 <0.1 <0.03 <0.01 <0.03	0.028 <0.1 <0.03 <0.01 <0.03	0.070 <0.1 <0.03 <0.01 <0.03	0.054 <0.1 <0.03 <0.01 <0.03	0.028 <0.1 <0.03 <0.01 <0.03
Zinc	T-Zn	<0.005	<0.005	<0.005	<0.005	<0.005
					1	

\$

Ð

File No. G4265

		Cougar Smith Creek 96 08 19	Cougar Smith Upstream 96 08 19	Tsable River 96 08 19	Argonaut Mine Pit 96 08 19	Cowie Creek 96 08 19
<u>Dissolved Me</u> Aluminum	<u>tais</u> D-Al	<0.2	<0.2	<0.2	<0.2	<0.2
Antimony	D-Sb	<0.2	<0.2	<0.2	<0.2	<0.2
Arsenic	D-As –	<0.2	<0.2	<0.2	<0.2	<0.2
Barium	D-Ba	<0.01	<0.01	<0.01	<0.01	<0.01
Beryllium	D-Be	<0.005	<0.005	<0.005	<0.005	<0.005
Bismuth Boron Cadmium	D-Bi D-B D-Cd	<0.1 <0.1 <0.01	<0.1 <0.1 <0.01	<0.1 <0.1 <0.1 <0.01	<0.1 <0.1 <0.1 <0.01	<0.1 <0.1 <0.1
Calcium	D-Ca	9.58	9.77	7.85	30.0	10.1
Chromium	D-Cr	<0.01	<0.01	<0.01	<0.01	<0.01
Cobalt	D-Co	<0.01	<0.01	<0.01	<0.01	<0.01
Copper	D-Cu	<0.01	<0.01	<0.01	<0.01	<0.01
Iron	D-Fe	<0.03	<0.03	<0.03	<0.03	<0.03
Lead	D-Pb	<0.05	<0.05	<0.05	<0.05	<0.05
Lithium		<0.01	<0.01	<0.01	<0.01	<0.01
Magnesium		2.70	2.53	7.35	1.42	2.34
Manganese	D-Ni	<0.005	<0.005	<0.005	<0.005	<0.005
Molybdenun		<0.03	<0.03	<0.03	<0.03	<0.03
Nickel		<0.02	<0.02	<0.02	<0.02	<0.02
Phosphorus		<0.3	<0.3	<0.3	<0.3	<0.3
Potassium	D-K	<2	<2	2	<2	<2
Selenium	D-Se	<0.2	<0.2	<0.2	<0.2	<0.2
Silicon	D-Si	6.27	5.26	2.01	2.94	4.65
Silver	D-Ag	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	D-Na	3	2	66	<2	2
Strontium	D-Sr	0.027	0.024	0.055	0.054	0.027
Thallium	D-Ti	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	D-Sn	<0.03	<0.03	<0.03	<0.03	<0.03
Titanium	D-Ti	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	D-V	<0.03	<0.03	<0.03	<0.03	<0.03
Zinc	D-Zn	<0.005	<0.005	<0.005	<0.005	<0.005

Page 7

(P

S.

File No. G4265

					T	
		SPS	LLO	NNO	<u>Q</u> RD	Cougar Smith
		96 08 19	96 08 19	96 08 19	96 08 19	Creek 96 08 19
Physical Tests						
Conductivity (umhos/cm) Total Dissolved Solids		-	143	-	-	86.8 60
Hardness	Ca€O3	-	-	-	-	35.0
pH Total Suspended Solids		7.47 -	7.15 13	1	1	7.76 1
Dissolved Anions						-
Alkalinity - Total	CaCO3	-	-	-	-	40.2
Sulphate SO4		865	42.8	18.4	13.1	<1.0
<u>Nutrients</u>						
Ammonia Nitrogen	N	-	-	-	-	<0.005
Total Kjeldahl Nitrogen Nitrate Nitrogen	N N	-	-	-	-	0.09
Nitrite Nitrogen	N	-	-	-	-	0.065
Total Dissolved Phosphate	P	-	-	-	-	0.001
Total Phosphate	Р	-	-	-	-	0.003

File No. G4889

			Ī			
		Road #1	Road #2	Cougar Smith Creek	Cowie Creek	Tsable River
· · · · · · · · · · · · · · · · · · ·		96 09 09	96 09 09	96 09 09	96 09 09	96 09 09
Physical Tests Conductivity (umbos/cm)		-	-	87.3	95.4	4380
Total Dissolved Solids Hardness pH Total Suspended Solids	CaCO3	- - -	-	52 33.5 7.84 1	52 38.3 7.71 1	2300 408 7.47 1
<u>Dissolved Anions</u> Alkalinity - Total Sulphate SO4	CaCO3	3.1	1510	41.2 2.1	46.7 3.1	38.1 162
<u>Nutrients</u> Ammonia Nitrogen Total Kjeldahl Nitrogen Nitrate Nitrogen Nitrite Nitrogen Total Dissolved Phosphate	N N N P	- - - -	-	<0.005 0.13 0.061 0.001 0.006	<0.005 0.08 0.078 0.002 0.004	<0.005 0.08 0.101 0.002 0.003
Total Phosphate	P	-	-	0.007	0.004	0.003

1D

.

(1)

.

RESULTS OF ANALYSIS

())

D

File No. G4889

				•		
		IRU	IRD	242 Portal	Cougar Smith	Cowie Creek
		96 09 09	96 09 09	Pond 96 09 09	Creek 96 09 09	96 09 09
<u>Total Metals</u>						······································
Aluminum Antimony Arsenic Barium Beryllium	T-Al T-Sb T-As T-Ba T-Be	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005	1.8 <0.2 <0.2 0.03 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005
Bismuth Boron Cadmium Calcium Chromium	T-Bi T-B T-Cd T-Ca T-Cr	<0.1 <0.1 <0.01 13.1 <0.01	<0.1 <0.1 <0.01 14.1 <0.01	<0.1 <0.1 <0.01 12.6 <0.01	<0.1 <0.1 <0.01 9.77 <0.01	<0.1 <0.1 <0.01 11.5 <0.01
Cobalt Copper Iron Lead Lithium	T-Co T-Cu T-Fe T-Pb T-Li	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 0.02 1.78 <0.05 <0.01	<0.01 <0.01 0.03 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 <0.01
Magnesium Manganese Molybdenun Nickel Phosphorus	T-Mň 1 T-Mo T-Ni	1.07 <0.005 <0.03 <0.02 <0.3	1.23 <0.005 <0.03 <0.02 <0.3	1.94 0.115 <0.03 <0.02 <0.3	2.86 <0.005 <0.03 <0.02 <0.3	2.65 <0.005 <0.03 <0.02 <0.3
Potassium Selenium Silicon Silver Sodium	T-K T-Se T-Si T-Ag T-Na	<2 <0.2 2.38 <0.01 <2	<2 <0.2 2.44 <0.01 3	<2 <0.2 3.54 <0.01 <2	<2 <0.2 6.43 <0.01 3	<2 <0.2 4.71 <0.01 3
Strontium Thallium Tin Titanium Vanadium	T-Sr T-Tl T-Sn T-Ti T-V	0.048 <0.1 <0.03 <0.01 <0.03	0.053 <0.1 <0.03 <0.01 <0.03	0.032 <0.1 <0.03 0.05 <0.03	0.026 <0.1 <0.03 <0.01 <0.03	0.026 <0.1 <0.03 <0.01 <0.03
Zinc	T-Zn	<0.005	<0.005	0.015	<0.005	<0.005

Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

Page 8

-

T

RESULTS OF ANALYSIS

(5

•

		Tsable River 96 09 09
<u>Total Metals</u> Aluminum Antimony Arsenic Barium Beryllium	T-Al T-Sb T-As T-Ba T-Be	<0.2 <0.2 <0.2 0.02 <0.005
Bismuth	T-Bi	<0.1
Boron	T-B	0.4
Cadmium	T-Cd	<0.01
Calcium	T-Ca	33.7
Chromium	T-Cr	<0.01
Cobalt	T-Co	<0.01
Copper	T-Cu	<0.01
Iron	T-Fe	<0.03
Lead	T-Pb	<0.05
Lithium	T-Li	0.01
Magnesium Manganese Molybdenun Nickel Phosphorus	Т-М ⁻ л n Т-Мо Т-Ni	80.3 <0.005 <0.03 <0.02 <0.3
Potassium	T-K	25
Selenium	T-Se	<0.2
Silicon	T-Si	1.92
Silver	T-Ag	<0.01
Sodium	T-Na	643
Strontium	T-Sr	0.505
Thallium	T-Tl	<0.1
Tin	T-Sn	<0.03
Titanium	T-Ti	<0.01
Vanadium	T-V	<0.03
Zinc	T-Zn	<0.005

۲

 $\hat{0}$

D

File No. G4889

		LLO	IRU	IRD	242 Portal Pond	Cougar Smith
		96 09 09	96 09 09	96 09 09	96 09 09	Creek 96 09 09
Dissolved Me	etals					
Aluminum	D-AI	-	<0.2	<0.2	<0.2	<0.2
Antimony	D-Sb	-	<0.2	<0.2	<0.2	<0.2
Arsenic	D-As	-	<0.2	<0.2	<0.2	<0.2
Barium	D-Ba	-	<0.01	<0.01	0.02	<0.01
Beryllium	D-Be	-	<0.005	<0.005	<0.005	<0.005
Bismuth	D-BI	-	<0.1	<0.1	<0.1	<0.1
Boron	D-B	-	<0.1	<0.1	<0.1	<0.1
Cadmium	D-Cd	-	<0.01	<0.01	<0.01	<0.01
Calcium	D-Ca	13.7	12.7	13.8	10.2	9.01
Chromium	D-Cr	-	<0.01	<0.01	<0.01	<0.01
Cobalt	D-Co		<0.01	-0.01	(0.01	
	D-C0 D-Cu	-		<0.01	<0.01	<0.01
Copper Iron		-	<0.01	<0.01	<0.01	<0.01
Lead	D-Fe	-	<0.03	<0.03	<0.03	<0.03
	D-Pb	-	<0.05	<0.05	<0.05	<0.05
Lithium	D-Li	-	<0.01	<0.01	<0.01	<0.01
Magnesium		1.77	1.03	1.21	1.61	2.67
	D-Mn	-	<0.005	<0.005	0.066	<0.005
Molybdenun	n D-Mo	-	<0.03	<0.03	<0.03	<0.03
Nickel	D-Ni	-	<0.02	<0.02	<0.02	<0.02
Phosphorus	D-P	-	<0.3	<0.3	<0.3	<0.3
Potassium	D-K	_	<2	<2	<2	<2
Selenium	D-Se	-	<0.2	<0.2	<0.2	<0.2
Silicon	D-Si	_	2.38	2.44	2.69	6.41
Silver	D-Ag	-	<0.01			
Sodium	D-Ag D-Na	-	<2	<0.01 3	<0.01 <2	<0.01 3
boarann	Dina	-	12	5	~ 2	13
Strontium	D-Sr	-	0.047	0.052	0.026	0.024
Thallium	D-TI	-	<0.1	<0.1	<0.1	<0.1
Tin	D-Sn	-	<0.03	<0.03	<0.03	<0.03
Titanium	D-Ti	-	<0.01	<0.01	<0.01	<0.01
Vanadium	D-V		<0.03	<0.03	<0.03	<0.03
Zinc	D-Zn	-	<0.005	<0.005	<0.005	<0.005

Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

Page 11

۰.

File No. G4889

-	e	
	Cowie Creek	Tsable River
	96 09 09	96 09 09
Dissolved Metals		
Aluminum D-Al	<0.2	<0.2
Antimony D-Sb	<0.2	<0.2
Arsenic D-As	<0.2	<0.2
Barium D-Ba	<0.01	0.02
Beryllium D-Be	<0.005	<0.005
Bismuth D-Bi	<0.1	<0.1
Boron D-B	<0.1	0.4
Cadmium D-Cd	<0.01	<0.01
Calcium D-Ca	11.1	33.1
Chromium D-Cr	<0.01	<0.01
Cobalt D-Co	<0.01	<0.01
Copper D-Cu	<0.01	<0.01
Iron D-Fe	<0.03	<0.03
Lead D-Pb	<0.05	<0.05
Lithium D-Li	<0.01	0.01
Magnesium D-Mg	2.58	79.1
Manganese D-Mn	<0.005	<0.005
Molybdenum D-Mo	<0.03	<0.03
Nickel D-Ni	<0.02	<0.02
Phosphorus D-P	<0.3	<0.3
Potassium D-K	<2	24
Selenium D-Se	<0.2	<0.2
Silicon D-Si	4.71	1.92
Silver D-Ag	<0.01	<0.01
Sodium D-Na	2	636
Strontium D-Sr	0.026	0.499
Thallium D-Tl	<0.1	<0.1
Tin D-Sn	<0.03	<0.03
Titanium D-Ti	<0.01	<0.01
Vanadium D-V	<0.03	<0.03
Zinc D-Zn	<0.005	<0.005

Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

Ð

5

File No. G5313

		IRD	242 Pond	242 Well	Tsable River	Cougar Creek
		96 09 23	96 09 19	96 09 23	96 09 18	Upstream 96 09 18
						· · · · · · · · · · · · · · · · · · ·
<u>Physical Tests</u> Conductivity (umhos/cm) Total Dissolved Solids Hardness pH Total Suspended Solids	CaCO3	- - <1	7.40 19	7.69 3	40.0 21 14.1 7.47 3	79.7 46 36.5 7.58 18
<u>Dissolved Anions</u> Alkalinity - Total Sulphate SO4	CaCO3	7.4	72.7 44.8	195 20.9	14.6 2.8	40.4 <1.0
<u>Nutrients</u> Ammonia Nitrogen Nitrate Nitrogen Nitrite Nitrogen Total Dissolved Phosphate Total Phosphate	N N P P	- - -		• • •	<0.005 0.047 0.001 0.005 0.005	0.015 0.084 0.001 0.005 0.027

.

1

File No. G5313

.

		Cougar Creek Ø Bridge 96 09 18	Cowie Creek 96 09 18	4S Sump 96 09 17	2N Highwall Seep 96 09 12	Ditch 1 96 09 23
<u>Physical Tests</u> Conductivity (umhos/cm) Total Dissolved Solids Hardness pH Total Suspended Solids	CaCO3	83.0 53 37.1 7.66 1	90.9 53 43.8 7.77 <1	- - 7.93	4130 3800 1490 7.03 9	- - -
<u>Dissolved Anions</u> Alkalinity - Total Sulphate SO4	CaCO3	40.0 4.0	46.9 1.5	366	97.2 2610	2150
<u>Nutrients</u> Ammonia Nitrogen Nitrate Nitrogen Nitrite Nitrogen Total Dissolved Phosphate Total Phosphate	N N P P	<0.005 0.058 0.001 0.007 0.007	<0.005 0.041 <0.001 <0.001 0.001		0.093 0.335 0.001 0.003 0.009	-

Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

Page 5

(

File No. G5313

		Tsable River	Cougar Creek Upstream	Cougar Creek @ Bridge	Cowie Creek	2N Highwall Seep
<u></u>		96 09 18	96 09 18	96 09 I8	96 09 18	96 09 12
<u>Total Metals</u> Aluminum	T-AI	<0.2	<0.2	<0.2	<0.2	0.0
Antimony	T-Sb	<0.2	<0.2	<0.2	<0.2	0.3 <0.2
Arsenic	T-As	<0.2	<0.2	<0.2	<0.2	<0.2
Barium	T-Ba	<0.01	<0.01	<0.01	<0.01	0.01
Beryllium	T-Be	<0.005	<0.005	<0.005	<0.005	<0.005
-					ļ	
Bismuth	T-Bi	<0.1	<0.1	<0.1	<0.1	<0.1
Boron	T-B	<0.1	<0.1	<0.1	<0.1	1.2
Cadmium	T-Cd	<0.01	<0.01	<0.01	<0.01	<0.01
Calcium	T-Ca	4.43	10.3	10.1	12.8	445
Chromium	T-Cr	<0.01	<0.01	<0.01	<0.01	<0.01
Cobalt	T-Co	<0.01	<0.01	<0.01	<0.01	<0.01
Copper	T-Cu	<0.01	<0.01	<0.01	<0.01	<0.01
Iron	T-Fe	<0.03	0.15	0.03	<0.03	0.25
Lead	Т-РЬ	<0.05	<0.05	<0.05	<0.05	<0.05
Lithium	T-Li	<0.01	<0.01	<0.01	<0.01	0.04
Magnesium	T-Mg	0.87	2.58	2.89	2.87	95.7
Manganese	T-Mn	<0.005	0.015	<0.005	<0.005	0.555
Molybdenum	nT-Mo	<0.03	<0.03	<0.03	<0.03	<0.03
Nickel	T-Ni	<0.02	<0.02	<0.02	<0.02	0.02
Phosphorus	T-P	<0.3	<0.3	<0.3	<0.3	<0.3
Potassium	т-к	<2	<2	<2	<2	6
Selenium	T-Se	<0.2	<0.2	<0.2	<0.2	<0.2
Silicon	T-Si	1.57	4.42	6.22	4.11	5.19
Silver	T-Ag	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	T-Na	2	<2	3	2	516
Strontium	T-Sr	0.017	0.027	0.031	0.031	3.91
Thallium	Ť-ŤÎ	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	T-Sn	<0.03	<0.03	<0.03	<0.03	<0.03
Titanium	T-Ti	<0.01	<0.01	<0.01	<0.01	0.02
Vanadium	T-V	<0.03	<0.03	<0.03	<0.03	<0.03
Zinc	T-Zn	<0.005	<0.005	<0.005	<0.005	0.007
	~ _	-0.000		-01000		

Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

Page 8

ł

3

File No. G5313

		Tsable River	Cougar Creek	Cougar Creek	Cowie Creek	4S Sump
		96 09 18	Upstream 96 09 18	@ Bridge 96 09 18	96 09 18	96 09 17
Dissolved Me	tals					
Aluminum Antimony Arsenic Barlum Beryllium	D-Al D-Sb D-As D-Ba D-Be	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 0.06 <0.005
Bismuth Boron Cadmium Calcium Chromium	D-Bi D-B D-Cd D-Ca D-Cr	<0.1 <0.1 <0.01 4.29 <0.01	<0.1 <0.1 <0.01 10.3 <0.01	<0.1 <0.1 <0.01 10.1 <0.01	<0.1 <0.1 <0.01 12.8 <0.01	<0.1 0.3 <0.01 143 <0.01
Cobalt Copper Iron Lead Lithium	D-Co D-Cu D-Fe D-Pb D-Li	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 0.01
Magnesium Manganese Molybdenuп Nickel Phosphorus	D-Mn 1 D-Mo D-Ni	0.83 <0.005 <0.03 <0.02 <0.3	2.58 <0.005 <0.03 <0.02 <0.3	2.89 <0.005 <0.03 <0.02 <0.3	2.87 <0.005 <0.03 <0.02 <0.3	15.0 0.930 <0.03 <0.02 <0.3
Potassium Selenium Silicon Silver Sodium	D-K D-Se D-Si D-Ag D-Na	<2 <0.2 1.55 <0.01 2	<2 <0.2 4.42 <0.01 <2	<2 <0.2 6.22 <0.01 3	<2 <0.2 4.11 <0.01 2	<2 <0.2 5.66 <0.01 26
Strontium Thallium Tin Titanium Vanadium	D-Sr D-Tl D-Sn D-Ti D-V	0.016 <0.1 <0.03 <0.01 <0.03	0.027 <0.1 <0.03 <0.01 <0.03	0.031 <0.1 <0.03 <0.01 <0.03	0.031 <0.1 <0.03 <0.01 <0.03	0.834 <0.1 <0.03 <0.01 <0.03
Zinc	D-Zn	<0.005	<0.005	<0.005	<0.005	0.010

()

File No. G5846

-

			7			
		IRU	IRD	Upper Cougar	T River	Cougar @ Hwy
		96 10 07	96 10 07	96 10 03	96 10 03	96 10 03
Physical Tests Conductivity (umhos/cm) Total Dissolved Solids Hardness pH Total Suspended Solids	CaCO3	95.1 49 41.1 7.63 1	102 67 44.6 7.70 2	89.9 54 42.6 7.79 3	81.9 47 22.5 7.58 4	87.0 51 37.5 7.69 5
<u>Dissolved Anions</u> Alkalinity - Total Sulphate SO4	CaCO3	37.2 6.2	40.5 7.2	43.7 2.6	23.3 6.4	39.1 2.2
<u>Nutrients</u> Ammonia Nitrogen Total Kjeldahl Nitrogen Nitrate Nitrogen Nitrite Nitrogen Total Dissolved Phosphate	N N N P	<0.005 0.12 0.014 0.001 0.004	<0.005 0.11 0.013 0.002 0.005	<0.005 0.044 0.001 0.004	<0.005 0.065 0.001 0.004	<0.005 0.024 0.001 0.005
Total Phosphate	Р	0.004	0.005		-	-

File No. G5846

	Lab Road	Cowie @ Upper
· ·= ·	96 10 07	Brîdge 96 10 03
	8300	92.3
CaCO3	2800	43.8
	2.46	7.71
0-009	-10	45.0
Callos	3790	2.6
		<0.005
N N	-	-
N	-	0.045
N	-	0.001
r	-	0.004
P		
	CaCO3 N N N P	96 10 07 CaCO3 2800 2.46 - CaCO3 <1.0 3790 N - N - N - N - N - N - P -

15€

RESULTS OF ANALYSIS

(5

File No. G5846

						 /
		242 U/G	242 U/G	IRU	IRD	Upper Cougar
		Sump 96 10 04	Sump 96 10 07	96 10 07	96 10 07	96 10 03
Total Metals						
Aluminum Antimony Arsenic Barium Beryllium	T-Al T-Sb T-As T-Ba T-Be	<0.2 <0.2 <0.2 0.08 <0.005	<0.2 <0.2 <0.2 0.07 <0.005	<0.2 <0.2 <0.2 0.01 <0.005	<0.2 <0.2 <0.2 0.01 <0.005	<0.2 <0.2 <0.2 0.01 <0.005
Bismuth Boron Cadmium Calcium Chromium	T-Bi T-B T-Cd T-Ca T-Cr	<0.1 0.1 <0.01 63.2 <0.01	<0.1 0.1 <0.01 53.5 <0.01	<0.1 <0.1 <0.01 14.7 <0.01	<0.1 <0.1 <0.01 15.7 <0.01	<0.1 <0.1 <0.01 12.6 <0.01
Cobalt Copper Iron Lead Lithium	T-Co T-Cu T-Fe T-Pb T-Li	<0.01 <0.01 0.30 <0.05 0.01	<0.01 <0.01 0.14 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 <0.01
Magnesium Manganese Molybdenun Nickel Phosphorus	T-Mň n T-Mo T-Ni	5.77 0.150 0.18 <0.02 <0.3	5.47 0.127 0.14 <0.02 <0.3	1.18 <0.005 <0.03 <0.02 <0.3	1.32 <0.005 <0.03 <0.02 <0.3	2.84 <0.005 <0.03 <0.02 <0.3
Potassium Selenium Silicon Silver Sodium	T-K T-Se T-Si T-Ag T-Na	2 <0.2 3.38 <0.01 5	<2 <0.2 2.84 <0.01 8	<2 <0.2 2.54 <0.01 2	<2 <0.2 2.61 <0.01 3	<2 <0.2 4.37 <0.01 2
Strontium Thallium Tin Titanium Vanadium	T-Sr T-T1 T-Sn T-Ti T-V	0.112 <0.1 <0.2 0.01 <0.03	0.118 <0.1 <0.2 0.01 <0.03	0.053 <0.1 <0.03 <0.01 <0.03	0.058 <0.1 <0.2 <0.01 <0.03	0.030 <0.1 <0.2 <0.01 <0.03
Zinc	T-Zn	0.011	<0.005	0.007	<0.005	<0.005

Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

Υ.

()

File No. G5846

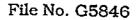
-

			ব			
		IRU	IRD	Upper Cougar	T River	Cougar @ Hwy
		96 10 07	96 10 07	96 10 03	96 10 03	96 10 03
<u>Dissolved Me</u> Aluminum Antimony Arsenic Barium Beryllium	<u>tals</u> D-Al D-Sb D-As D-Ba D-Be	<0.2 <0.2 <0.2 0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005
Bismuth Boron Cadmium Calcium Chromium	D-Bi D-B D-Cd D-Ca D-Cr	<0.1 <0.1 <0.01 14.5 <0.01	<0.1 <0.1 <0.01 15.7 <0.01	<0.1 <0.1 <0.01 12.4 <0.01	<0.1 <0.1 <0.01 6.54 <0.01	<0.1 <0.1 <0.01 10.1 <0.01
Cobalt Copper Iron Lead Lithium	D-Co D-Cu D-Fe D-Pb D-Li	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 <0.01 0.03 <0.05 <0.01
Magnesium Manganese Molybdenun Nickel Phosphorus	D-Mñ n D-Mo D-Ni	1.16 <0.005 <0.03 <0.02 <0.3	1.31 <0.005 <0.03 <0.02 <0.3	2.83 <0.005 <0.03 <0.02 <0.3	1.49 <0.005 <0.03 <0.02 <0.3	2.96 <0.005 <0.03 <0.02 <0.3
Potassium Selenium Silicon Silver Sodium	D-K D-Se D-Si D-Ag D-Na	<2 <0.2 2.52 <0.01 <2	<2 <0.2 2.61 <0.01 3	<2 <0.2 4.31 <0.01 2	<2 <0.2 1.83 <0.01 8	<2 <0.2 6.18 <0.01 3
Strontium Thallium Tin Titanium Vanadium	D-Sr D-Tl D-Sn D-Ti D-V	0.053 <0.1 <0.03 <0.01 <0.03	0.058 <0.1 <0.2 <0.01 <0.03	0.030 <0.1 <0.2 <0.01 <0.03	0.025 <0.1 <0.2 <0.01 <0.03	0.029 <0.1 <0.2 <0.01 <0.03
Zinc	D-Zn	<0.005	<0.005	<0.005	<0.005	<0.005

Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

(3)

.


		Lab Road 96 10 07	Cowie @ Upper Bridge 96 10 03
Dissolved Me Aluminum Antimony Arsenic Barlum Beryllium	D-Al	369 <0.4 4.2 0.07 0.02	<0.2 <0.2 <0.2 0.01 <0.005
Bismuth	D-Bi	<0.2	<0.1
Boron	D-B	1.6	<0.1
Cadmium	D-Cd	0.05	<0.01
Calcium	D-Ca	634	12.8
Chromium	D-Cr	0.69	<0.01
Cobalt	D-Co	6.17	<0.01
Copper	D-Cu	21.9	<0.01
Iron	D-Fe	1820	<0.03
Lead	D-Pb	<0.1	<0.05
Lithium	D-Li	0.57	<0.01
Magnesium Manganese Molybdenun Nickel Phosphorus	D-Mn n D-Mo D-Ni	296 71.0 <0.06 10.1 8.6	2.88 <0.005 <0.03 <0.02 <0.3
Potassium	D-K	7	<2
Selenium	D-Se	<0.4	<0.2
Silicon	D-Si	48.5	4.40
Silver	D-Ag	<0.02	<0.01
Sodium	D-Na	91	2
Strontium	D-Sr	4.06	0.030
Thallium	D-Ti	<0.2	<0.1
Tin	D-Sn	<0.06	<0.2
Titanium	D-Ti	<0.02	<0.01
Vanadium	D-V	<0.06	<0.03
Zinc	D-Zn	16.0	<0.005

VE

Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

RESULTS OF ANALYSIS

•

l

)

File No. G6253

		Cowle Creek 96 10 17	Cougar Creek @ Bridge 96 10 17	Cougar Creek Upstream 96 10 17	Tsable River @ Bridge 96 10 17	4S Under 96 10 18
<u>Physical Tests</u> Conductivity (umhos/cm) Total Dissolved Solids Hardness pH Total Suspended Solids	CaCO3	77.8 46 27.1 7.56 <1	- 79.3 33 27.5 7.52 4	66.7 30 20.7 7.48 <1	30.8 22 11.6 7.28 <1	859 323 421 6.80 167
<u>Dissolved Anions</u> Aikalinity - Total Sulphate SO4	CaCO3	25.6 1.5	25.6 2.6	20.4 <1.0	11.6 1.7	19.0 388
<u>Nutrients</u> Ammonia Nitrogen Nitrate Nitrogen Nitrite Nitrogen Total Dissolved Phosphate Total Phosphate	N N P P	<0.005 0.151 0.001 0.004 0.004	<0.005 0.124 0.001 0.009 0.010	<0.005 0.084 0.001 0.004 0.004	<0.005 0.060 0.001 0.005 0.005	0.042 0.236 0.004 0.003 0.018

.

•

()

File No. G6253

						
		Cowie Creek	Cougar Creek @ Bridge	Cougar Creek Upstream	Tsable River @ Bridge	4S Under
		96 10 17	96 10 17	96 10 17	96 10 17	96 10 18
	4.01.0		÷			
Dissolved Me Aluminum Antimony Arsenic Barium Beryllium	D-Al D-Sb D-As D-Ba D-Be	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 0.04 <0.005
Bismuth Boron Cadmium Calcium Chromium	D-Bi D-B D-Cd D-Ca D-Cr	<0.1 <0.1 <0.01 7.96 <0.01	<0.1 <0.1 <0.01 7.60 <0.01	<0.1 <0.1 <0.01 6.18 <0.01	<0.1 <0.1 <0.01 3.42 <0.01	<0.1 0.1 <0.01 142 <0.01
Cobalt Copper Iron Lead Lithium	D-Co D-Cu D-Fe D-Pb D-Li	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 <0.01	0.08 <0.01 <0.03 <0.05 0.01
Magnesium Manganese Molybdenun Nickel Phosphorus	D-Mn n D-Mo D-Ni	1.75 <0.005 <0.03 <0.02 <0.3	2.06 <0.005 <0.03 <0.02 <0.3	1.28 <0.005 <0.03 <0.02 <0.3	0.74 <0.005 <0.03 <0.02 <0.3	16.2 4.07 <0.03 0.11 <0.3
Potassium Selenium Silicon Silver Sodium	D-K D-Se D-Si D-Ag D-Na	<2 <0.2 2.46 <0.01 <2	<2 <0.2 3.83 <0.01 <2	<2 <0.2 2.44 <0.01 <2	<2 <0.2 1.71 <0.01 <2	<2 <0.2 2.37 <0.01 11
Strontium Thallium Tin Titanium Vanadium	D-Sr D-TI D-Sn D-Ti D-V	0.019 <0.1 <0.03 <0.01 <0.03	0.023 <0.1 <0.03 <0.01 <0.03	0.015 <0.1 <0.03 <0.01 <0.03	0.012 <0.1 <0.03 <0.01 <0.03	0.657 <0.1 <0.03 <0.01 <0.03
Zine	D-Zn	<0.005	<0.005	<0.005	<0.005	0.119

1

		Upper Cougar Cougar Creek Ø Creek Bridge		Cowie Creek	Tsable Ø Bridge
		96 11 08	96 11 08	96 11 08	96 11 08
<u>Physical Tests</u> Conductivity (umhos/cm Total Dissolved Solids Hardness CaCO3 pH Total Suspended Solids	1}	29.0 13 12.6 7.00 8	36.0 16 14.7 7.08 27	35.0 16 14.6 7.14 4	21.0 10 8.28 6.98 25
<u>Dissolved Anions</u> Alkalinity - Total Sulphate SO4	CaCO3	11.6 1.3	13.4 2.1	14.1 1.8	7.1 2.5
<u>Nutrients</u> Ammonia Nitrogen Nitrate Nitrogen Nitrite Nitrogen Total Dissolved Phosphate Total Phosphate	N N P P	0.005 0.084 0.003 0.005 0.014	0.005 0.113 0.004 0.008 0.029	<0.005 0.079 0.002 0.001 0.009	0.005 0.049 0.005 0.001 0.030

Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

.

٢

.

94

File No. G7039

		Upper Cougar Creek 96 11 08	Cougar Creek @ Bridge 96 11 08	Cowie Creek 96 11 08	Tsable @ Bridge 96 11 08
<u>Total Metals</u> Aluminum Antimony Arsenic Barium Beryllium	T-AI T-Sb T-As T-Ba T-Be	0.3 <0.2 <0.2 <0.01 <0.005	0.4 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005	0.5 <0.2 <0.2 <0.01 <0.005
Bismuith	T-Bi	<0.1	<0.1	<0.1	<0.1
Boron	T-B	<0.1	<0.1	<0.1	<0.1
Cadmium	T-Cd	<0.01	<0.01	<0.01	<0.01
Calcium	T-Ca	4.05	4.53	4.42	2.61
Chromium	T-Cr	<0.01	<0.01	<0.01	<0.01
Cobalt	T-Co	<0.01	<0.01	<0.01	<0.01
Copper	T-Cu	<0.01	<0.01	<0.01	<0.01
Iron	T-Fe	0.27	0.48	0.11	0.68
Lead	T-Pb	<0.05	<0.05	<0.05	<0.05
Lithium	T-Li	<0.01	<0.01	<0.01	<0.01
Magnesium	T-Mg	0.79	1.10	0.95	0.70
Manganese	T-Mn	0.010	0.020	0.008	0.033
Molybdenum	T-Mo	<0.03	<0.03	<0.03	<0.03
Nickel	T-Ni	<0.02	<0.02	<0.02	<0.02
Phosphorus	T-P	<0.3	<0.3	<0.3	<0.3
Potassium	T-K	<2	<2	<2	<2
Selenium	T-Se	<0.2	<0.2	<0.2	<0.2
Silicon	T-Si	2.08	2.48	1.83	1.98
Silver	T-Ag	<0.01	<0.01	<0.01	<0.01
Sodium	T-Na	<2	<2	<2	<2
Strontium	T-Sr	0.011	0.011	0.013	0.013
Thallium	T-Tl	<0.1	<0.1	<0.1	<0.1
Tin	T-Sn	<0.03	<0.03	<0.03	<0.03
Titanium	T-Ti	0.02	0.02	<0.01	0.03
Vanadium	T-V	<0.03	<0.03	<0.03	<0.03
Zinc	T-Zn	<0.005	<0.005	<0.005	<0.005

Л5€

RESULTS OF ANALYSIS

Ś

File No. G7039

		Upper Cougar Creek 96 11 08	Cougar Creek @ Bridge 96 11 08	Cowie Creek 96 11 08	Tsable @ Bridge 96 11 08
<u>Dissolved Met</u> Aluminum Antimony	als D-Al D-Sb	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2
Arsenic	D-As	<0.2	<0.2	<0.2	<0.2
Barium	D-Ba	<0.01	<0.01	<0.01	<0.01
Beryllium	D-Be	<0.005	<0.005	<0.005	<0.005
Bismuth	D-Bi	<0.1	<0.1	<0.1	<0.1
Boron	D-B	<0.1	<0.1	<0.1	<0.1
Cadmium	D-Cd	<0.01	<0.01	<0.01	<0.01
Calcium	D-Ca	3.87	4.29	4.35	2.44
Chromium	D-Cr	<0.01	<0.01	<0.01	<0.01
Cobalt	D-Co	<0.01	<0.01	<0.01	<0.01
Copper	D-Cu	<0.01	<0.01	<0.01	<0.01
Iron	D-Fe	0.06	0.08	0.03	0.05
Lead	D-Pb	<0.05	<0.05	<0.05	<0.05
Lithium	D-Li	<0.01	<0.01	<0.01	<0.01
Magnesium	D-Mg	0.70	0.97	0.92	0.53
Manganese	D-Mn	<0.005	<0.005	<0.005	<0.005
Molybdenum	D-Mo	<0.03	<0.03	<0.03	<0.03
Nickel	D-Ni	<0.02	<0.02	<0.02	<0.02
Phosphorus	D-P	<0.3	<0.3	<0.3	<0.3
Potassium	D-K	<2	<2	<2	<2
Selenium	D-Se	<0.2	<0.2	<0.2	<0.2
Silicon	D-Si	1.82	2.14	1.76	1.50
Silver	D-Ag	<0.01	<0.01	<0.01	<0.01
Sodium	D-Na	<2	<2	<2	<2
Stronțium	D-Sr	0.010	0.011	0.013	0.013
Thallium	D-Tl	<0.1	<0.1	<0.1	<0.1
Tin	D-Sn	<0.03	<0.03	<0.03	<0.03
Titanium	D-Ti	<0.01	<0.01	<0.01	<0.01
Vanadium	D-V	<0.03	<0.03	<0.03	<0.03
Zinc	D-Zn	<0.005	<0.005	<0.005	<0.005

File No. G7352

		Before 4S	QRD	Cougar Creek	Cowie Creek	Tsable River
	·····	96 11 25	96 11 25	96 11 21	96 11 21	96 11 21
<u>Physical Tests</u> Conductivity (umhos Total Dissolved Solids	5/cm)	606	-	55	50	76
Hardness CaCO3 pH Total Suspended Solids	;	7.14 21	2	25 21.1 7.26 2	28 20.6 7.30 <1	23 13.8 7.18 5
<u>Dissolved Anions</u> Alkalinity-Total Sulphate SO4	CaCO3	275	47	23 2	21 1	13 3
<u>Nutrients</u> Ammonia Nitrogen Total Kjeldahl Nitrogen	N N	-	-	· 0.007	<0.005	<0.005 -
Nitrate Nitrogen Nitrite Nitrogen Total Dissolved Phosphate	N N P	-	-	0.162 <0.001 0.002	0.075 0.002 0.002	0.056 0.002 0.004
Total Phosphate	P	-	-	0.002	0.003	0.006

Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

٩

Ó

File No. G7352

	·	Cougar Creek 96 11 21	Cowie Creek 96 11 21	Tsable River 96 11 21
<u>Total Metals</u> Aluminum Antimony Arsenic Barium Beryllium	T-Al T-Sb T-As T-Ba T-Be	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005
Bismuth	T-Bi	<0.1	<0.1	<0.1
Boron	T-B	<0.1	<0.1	<0.1
Cadmium	T-Cd	<0.01	<0.01	<0.01
Calcium	T-Ca	5.86	6.08	3.93
Chromium	T-Cr	<0.01	<0.01	<0.01
Cobalt	T-Co	<0.01	<0.01	<0.01
Copper	T-Cu	<0.01	<0.01	<0.01
Iron	T-Fe	<0.03	<0.03	<0.03
Lead	T-Pb	<0.05	<0.05	<0.05
Lithium	T-Li	<0.01	<0.01	<0.01
Magnesium	T-Mg	1.56	1.32	0.97
Manganese	T-Mn	<0.005	<0.005	<0.005
Molybdenum	T-Mo	<0.03	<0.03	<0.03
Nickel	T-Ni	<0.02	<0.02	<0.02
Phosphorus	T-P	<0.3	<0.3	<0.3
Potassium	T-K	<2	<2	<2
Selenium	T-Se	<0.2	<0.2	<0.2
Silicon	T-Si	4.00	2.65	2.11
Silver	T-Ag	<0.01	<0.01	<0.01
Sodium	T-Na	<2	<2	7
Strontium	T-Sr	0.019	0.015	0.015
Thallium	T-TI	<0.1	<0.1	<0.1
Tin	T-Sn	<0.03	<0.03	<0.03
Titanium	T-TI	<0.01	<0.01	<0.01
Vanadium	T-V	<0.03	<0.03	<0.03
Zinc	T-Zn	0.006	0.009	<0.005

∕15€

RESULTS OF ANALYSIS

()

File No. G7352

				J	
		Cougar Creek	Cowie Creek	Tsable River	Middle Point Sump
		96 11 21	96 11 21	96 11 21	96 11 18
Discoluted Met	-1-				
Dissolved Met Aluminum	D-Al	<0.2	<0.2	<0.2	
Antimony	D-Sb	<0.2	<0.2	<0.2	-
Arsenic	D-As	<0.2	<0.2	<0.2	-
Barium	D-Ba	<0.01	<0.01	<0.01	-
Beryllium	D-Be	<0.005	<0.005	<0.005	-
Bismuth	D-Bi	<0.1	<0.1	<0.1	-
Boron Cadmium	D-B D-Cd	<0.1 <0.01	<0.1 <0.01	<0.1 <0.01	-
Calcium	D-Ca	5.86	6.08	3.93	21.7
Chromium	D-Cr	<0.01	<0.01	<0.01	-
Cobalt	D-Co	<0.01	<0.01	<0.01	-
Copper	D-Cu	<0.01	< 0.01	<0.01	-
Iron	D-Fe	<0.03	<0.03	<0.03	-
Lead	D-Pb	<0.05	<0.05	<0.05	-
Lithium	D-Li	<0.01	<0.01	<0.01	-
Magnesium	D-Mg	1.56	1.32	0.97	1.57
Manganese	D-Mn	<0.005	<0.005	< 0.005	_
Molybdenum		<0.03	<0.03	<0.03	-
Nickei	D-Ni	<0.02	<0.02	<0.02	-
Phosphorus	D-P	<0.3	<0.3	<0.3	-
Potassium	D-K	<2	<2	<2	-
Selenium	D-Se	<0.2	<0.2	<0.2	-
Silicon Silver	D-Si	3.79	2.61	1.98	-
Sodium	D-Ag D-Na	<0.01 <2	<0.01 <2	<0.01 7	-
oouun	D-Na			-	
Strontium	D-Sr	0.019	0.015	0.015	-
Thallium	D-TI	<0.1	<0.1	<0.1	-
Tin Titanium	D-Sn D-Ti	<0.03	<0.03	<0.03	· -
Vanadium	D-N	<0.01 <0.03	<0.01 <0.03	<0.01 <0.03	-
					-
Zinc	D-Zn	<0.005	<0.005	<0.005	-
					-

Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

Page 13

.

-

File No. G7765

		Cowie Creek	Upper Cowie Creek	Cougar Creek Ø Bridge	Tsable Ríver
		96 12 06	96 12 06	96 12 06	96 12 06
<u>Physical Tests</u> Conductivity (umho Total Dissolved Solids Hardness CaCO3 pH Total Suspended Solids		39 17 15.4 7.32 1	25 10 9.72 7.26 7	43 18 17.8 7.31 1	40 17 12.2 7.19 1
<u>Dissolved Anions</u> Alkalinity-Total Sulphate SO4	CaCO3	16 1	10 <1	16 1	12 2
<u>Nutrients</u> Ammonia Nitrogen Nitrate Nitrogen Nitrite Nitrogen Total Dissolved Phosphate Total Phosphate	N N P P	<0.005 0.086 0.004 0.002 0.003	<0.005 0.065 0.001 0.002 0.002	<0.005 0.175 0.006 0.002 0.003	0.007 0.078 0.002 0.002 0.003

Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

.

∕₽€

RESULTS OF ANALYSIS

File No. G7765

		Cowie Creek 96 12 06	Upper Cowie Creek 96 12 06	Cougar Creek @ Bridge 96 12 06	Tsable River 96 12 06
<u>Total Metals</u> Aluminum Antimony Arsenic Barium Beryllium	T-Al T-Sb T-As T-Ba T-Be	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005
Bismuth	T-Bi	<0.1	<0.1	<0.1	<0.1
Boron ·	T-B	<0.1	<0.1	<0.1	<0.1
Cadmium	T-Cd	<0.01	<0.01	<0.01	<0.01
Calcium	T-Ca	4.46	2.94	5.00	3.71
Chromium	T-Cr	<0.01	<0.01	<0.01	<0.01
Cobalt	T-Co	<0.01	<0.01	<0.01	<0.01
Copper	T-Cu	<0.01	<0.01	<0.01	<0.01
Iron	T-Fe	<0.03	<0.03	0.06	0.04
Lead	T-Pb	<0.05	<0.05	<0.05	<0.05
Lithium	T-Li	<0.01	<0.01	<0.01	<0.01
Magnesium	T-Mg	1.04	0.63	1.33	0.88
Manganese	T-Mn	<0.005	<0.005	<0.005	<0.005
Molybdenum	T-Mo	<0.03	<0.03	<0.03	<0.03
Nickel	T-Ni	<0.02	<0.02	<0.02	<0.02
Phosphorus	T-P	<0.3	<0.3	<0.3	<0.3
Potassium	T-K	<2	<2	<2	<2
Selenium	T-Se	<0.2	<0.2	<0.2	<0.2
Silicon	T-Si	2.24	1.72	3.20	2.20
Silver	T-Ag	<0.01	<0.01	<0.01	<0.01
Sodium	T-Na	<2	<2	<2	3
Strontium	T-Sr	0.014	0.011	0.015	0.014
Thallium	T-Tl	<0.1	<0.1	<0.1	<0.1
Tin	T-Sn	<0.03	<0.03	<0.03	<0.03
Titanium	T-Ti	<0.01	<0.01	<0.01	<0.01
Vanadium	T-V	<0.03	<0.03	<0.03	<0.03
Zinc	T-Zn	<0.005	<0.005	<0.005	<0.005

Page 2

Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

.

٩

1

File No. G7765

		Cowie Creek 96 12 06	Upper Cowie Creek 96 12 06	Cougar Creek @ Bridge 96 12 06	Tsable River 96 12 06
<u>Dissolved Met</u> Aluminum Antimony Arsenic Barium Beryllium	<u>als</u> D-Al D-Sb D-As D-Ba D-Be	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005	<0.2 <0.2 <0.2 <0.01 <0.005
Bismuth	D-Bi	<0.1	<0.1	<0.1	<0.1
Boron	D-B	<0.1	<0.1	<0.1	<0.1
Cadmium	D-Cd	<0.01	<0.01	<0.01	<0.01
Calcium	D-Ca	4.46	2.87	4.95	3.52
Chromium	D-Cr	<0.01	<0.01	<0.01	<0.01
Cobalt	D-Co	<0.01	<0.01	<0.01	<0.01
Copper	D-Cu	<0.01	<0.01	<0.01	<0.01
Iron	D-Fe	<0.03	<0.03	0.04	<0.03
Lead	D-Pb	<0.05	<0.05	<0.05	<0.05
Lithium	D-Li	<0.01	<0.01	<0.01	<0.01
Magnesium	D-Mg	1.04	0.62	1.32	0.84
Manganese	D-Mn	<0.005	<0.005	<0.005	<0.005
Molybdenum	D-Mo	<0.03	<0.03	<0.03	<0.03
Nickel	D-Ni	<0.02	<0.02	<0.02	<0.02
Phosphorus	D-P	<0.3	<0.3	<0.3	<0.3
Potassium	D-K	<2	<2	<2	<2
Selenium	D-Se	<0.2	<0.2	<0.2	<0.2
Silicon	D-Si	2.25	1.69	3.13	2.13
Silver	D-Ag	<0.01	<0.01	<0.01	<0.01
Sodium	D-Na	<2	<2	<2	2
Strontium	D-Sr	0.014	0.011	0.015	0.014
Thallium	D-TI	<0.1	<0.1	<0.1	<0.1
Tin	D-Sn	<0.03	<0.03	<0.03	<0.03
Titanium	D-Ti	<0.01	<0.01	<0.01	<0.01
Vanadium	D-V	<0.03	<0.03	<0.03	<0.03
Zinc	D-Zn	<0.005	<0.005	<0.005	<0.005

Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

Page 3

File No. G7764r

		Cougar Creek @	2 Sump	2 Sump	3 Sump -	3 Sump
		Bridge 96 12 06	96 12 05	96 12 09	96 12 05	96 12 09
	_					
<u>Dissolved Met</u> Aluminum Antimony Arsenic Barium Beryllium	<u>als</u> D-Al D-Sb D-As D-Ba D-Be		<0.2 <0.2 <0.2 0.02 <0.005	<0.2 <0.2 <0.2 0.02 <0.005	<0.2 <0.2 <0.2 0.02 <0.005	<0.2 <0.2 <0.2 0.02 <0.005
Bismuth Boron Cadmium Calcium Chromium	D-Bi D-B D-Cd D-Ca D-Cr	-	<0.1 0.4 <0.01 286 <0.01	<0.1 0.4 <0.01 282 <0.01	<0.1 0.4 <0.01 259 <0.01	<0.1 0.3 <0.01 183 <0.01
Cobalt Copper Iron Lead Lithium	D-Co D-Cu D-Fe D-Pb D-Li	-	<0.01 <0.01 <0.03 <0.05 0.01	<0.01 <0.01 <0.03 <0.05 0.01	<0.01 <0.01 <0.03 <0.05 <0.01	<0.01 <0.01 <0.03 <0.05 <0.01
Magnesium Manganese Molybdenum Nickel Phosphorus	D-Mg D-Mn D-Mo D-Ni D-P	-	25.7 0.077 <0.03 <0.02 <0.3	24.7 0.134 <0.03 <0.02 <0.3	22.8 0.083 <0.03 <0.02 <0.3	15.6 0.068 <0.03 <0.02 <0.3
Potassium Selenium Silicon Silver Sodium	D-K D-Se D-Si D-Ag D-Na	:	<2 <0.2 1.95 <0.01 58	<2 <0.2 1.87 <0.01 63	<2 <0.2 1.30 <0.01 74	<2 <0.2 0.89 <0.01 47
Strontium Thallium Tin Titanium Vanadium	D-Sr D-TI D-Sn D-Ti D-V	-	2.46 <0.1 <0.03 <0.01 <0.03	2.47 <0.1 <0.03 <0.01 <0.03	2.38 <0.1 <0.03 <0.01 <0.03	1.54 <0.1 <0.03 <0.01 <0.03
Zinc	D-Zn	-	<0.005	<0.005	<0.005	<0.005
Extractables Oil and Greas		<5	-	-	-	<u> </u>

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

ંસો

1

File No. G8247

.

		Tsable River	Cowie Creek	Cougar Smith
		96 12 27	96 12 27	Cræk 96 12 27
Physical Tests Conductivity (umbor Total Dissolved Solids Hardness CaCO3 pH Total Suspended Solids		440 220 55.6 7.09 4	44 19 17.9 7.35 1	39 18 18.7 7.38 1
<u>Dissolved Anions</u> Alkalinity-Total Sulphate SO4	CaCO3	10 18	19 <1	16 <1
Nutricats Ammonia Nitrogen Total Kjeldahl Nitrogen Nitrate Nitrogen Nitrite Nitrogen Total Dissolved Phosphate	N N N P	<0.005 0.11 0.033 0.009 <0.001	<0.005 0.08 0.078 0.011 <0.001	<0.005 0.09 0.115 0.002 <0.001
Total Phosphate	P	0.004	<0.001	0.001

.

File No. G8247

•

		Cowie Creek	Cougar Smith
			Creek
		96 12 27	96 12 27
issolved Me	tale		
Aluminum	D-Al	<0.2	<0.2
Antimony	D-Sb	<0.2	<0.2
Arsenic	D-As	<0.2	
Barlum	D-As D-Ba	<0.2	<0.2
Beryllium			<0.01
Derymum	D-Be	<0.005	<0.005
Bismuth	D-Bi	<0.1	<0.1
Boron	D-B	<0.1	<0.1
Cadmium	D-Cd	<0.01	<0.01
Calcium	D-Ca	5,19	5.38
Chromium	D-Cr	<0.01	<0.01
Cobalt	D-Co	<0.01	<0.01
Copper	D-Cu	<0.01	<0.01
Iron	D-Fe	<0.03	<0.03
Lead	D-Pb	<0.05	<0.05
Lithium	D-Li	<0.01	<0.01
Magnesium	D-Mg	1.20	1.29
Manganese	D-Mn	<0.005	<0.005
Molvodenum		<0.03	<0.03
Nickel	D-Ni	<0.02	<0.02
Phosphorus	D-P	<0.3	<0.3
-	-		<0.5
Potassium	D-K	<2	<2
Selenium	D-Se	<0.2	<0.2
Silicon	D-Si	2.83	3.54
Silver	D-Ag	<0.01	<0.01
Sodium	D-Na	<2	<2
Strontium	D-Sr	0.013	0.016
Thallium	D-TI	<0.1	<0.1
Tin	D-Sn	<0.03	<0.03
Titanium	D-Ti	<0.01	<0.01
Vanadium	D-V	<0.03	<0.03
	4 47° ₹	10.00	NU.U0
Zinc	D-Zn	<0.005	<0.005

.

File No. G8247

		Cougar Smith Creek 96 12 27
mant state		
<u>Total Metals</u> Aluminum	4T A]	<i>(</i> 0.0
	T-Al	<0.2
Antimony Arsenie	T-Sb T-As	<0.2
Barium	T-Ba	<0.2 <0.01
Beryllium	T-Be	<0.005
Derymum	1-125	<0.005
Bismuth	T-Bi	<0.1
Boron	T-B	<0.1
Cadmium	T-Cd	<0.01
Calcium	T-Ca	5.38
Chromium	T-Cr	<0.01
Cobalt	T-Co	<0.01
Copper	T-Cu	<0.01
Iron	T-Fe	<0.03
Lead	T-Pb	<0.05
Lithium	T-Li	<0.01
Magnesium	T-Mg	1.30
Manganese	T-Mn	<0.005
Molybdenum		<0.03
Nickel	T-Ni	<0.02
Phosphorus	T-P	<0.3
Potassium	т-к	<2
Selenium	T-Se	<0.2
Silicon	T-Si	3.66
Silver	T-Ag	<0.01
Sodium	T-Na	<2
Strontium	T-Sr	0.016
Thallium	T-TI	<0.1
Tin	T-Sn	<0.03
Titanium	T-TI	<0.01
Vanadium	T-V	<0.03
Zinc	T-Zn	<0.005

File No. G8247

				f		
		WD	WB	цю	Tsable River	Cowie Creek
<u>.</u>		96 12 30	96 12 30	96 12 30	96 12 27	96 12 27
Total Metals						
Aluminum	T-Al	<0.2	<0.2	<0.2	<0.2	<0.2
Antimony	T-Sb	<0.2	<0.2	<0.2	<0.2	<0.2
Arsenic	T-As	<0.2	<0.2	<0.2	<0.2	<0.2
Barium	T-Ba	0.04	<0.01	<0.01	<0.01	<0.01
Beryllium	T-Be	<0.005	<0.005	<0.005	<0.005	<0.005
Bismuth	T-Bi	<0.1	<0.1	<0.1	<0.1	<0.1
Boron	T-B	1.1	<0.1	<0.1	<0.1	<0.1
Cadmium	T-Cd	<0.01	<0.01	<0.01	<0.01	<0.01
Calcium	T-Ca	282	10.9	3.75	7.42	5.19
Chromium	T-Cr	<0.01	<0.01	<0.01	<0.01	<0.01
Cobalt	T-Co	<0.01	<0.01	<0.01	<0.01	<0.01
Copper	T-Cu	<0.01	<0.01	<0.01	<0.01	<0,01
Iron	T-Fe	2.20	0.05	0.05	0.03	<0.03
Lead	T-Pb	<0.05	<0.05	<0.05	<0.05	<0.05
Lithium	T-Li	0.02	<0.01	<0.01	<0.01	<0.01
Magnesium	T-Mg	56.3	2.02	0.69	8.99	1.20
Manganese	T-Mn	1.16	0.008	<0.005	<0.005	<0.005
Molybdenum		<0.03	<0.03	<0.03	<0.03	<0.03
Nickel	T-Ni	<0.02	<0.02	<0.02	<0.02	<0.02
Phosphorus	T-P	<0,3	<0.3	<0.3	<0.3	<0.3
Potassium	T-K	4	<2	<2	2	<2
Selenium	T-Se	<0.2	<0.2	<0.2	<0.2	<0.2
Silicon	T-Si	3.29	2.90	3.33	1.50	3.01
Silver	T-Ag	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	T-Na	484	9	<2	69	<2
Strontium	T-Sr	2.92	0.070	0.019	0.065	0.013
Thallium	T-T1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	T-Sn	<0.03	<0.03	<0.03	<0.03	<0.03
Titanium	T-Ti	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	T-V	<0.03	<0.03	<0.03	<0.03	<0.03
Zinc	T-Zn	0.022	<0.005	0.009	<0.005	<0.005
					L	

Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

.

.

(**)

_.___

.

 \bigcirc

File No. G8247

.

						\sim
		WD	WB	WP	ЦО	Tsable River
		96 12 30	96 12 30	96 12 30	96 12 30	96 12 27
Dissolved Met	<u>als</u>					
Aluminum	D-Al	<0.2	-	-	-	<0.2
Antimony	D-Sb	<0.2	-	-	-	<0.2
Arsenic	D-As	<0.2	-	-	-	<0.2
Barium	D-Ba	0.03	-	-	-	< 0.01
Beryllium	D-Be	<0.005	-	-	-	<0.005
Bismuth	D-Bi	<0.1	-	-	-	<0.1
Boron	D-B	1.0	-	-	-	<0.1
Cadmium	D-Cd	<0.01	-	-	-	<0.01
Calcium	D-Ca	265	10.9	-	3.75	7.42
Chromium	D-Cr	<0.01	-	-	-	<0.01
		4				
Cobalt	D-Co	<0.01	-	-	-	<0.01
Copper	D-Cu	<0.01	-	-	-	<0.01
Iron	D-Fe	<0.03	-	<0.03	-	<0.03
Lead	D-Pb	<0.05	-	-	-	<0.05
Lithium	D-Li	0.02	-	-	-	<0.01
Magnesium	D-Mg	54.1	2.02	-	0.69	8.99
Manganese	D-Mn	0.211		-	-	<0.005
Molybdenum		<0.03	-	-	-	<0.03
Nickel	D-Ni	<0.02	-	-	-	<0.02
Phosphorus	D-P	<0.3	-	-	-	<0.3
Potassium	D-K	4	_			
Selenium	D-Se	₹0.2	•	-	-	2
Silicon	D-Se D-Si	2.76	-	-	-	1.46
Silver			-	-	-	
Sodium	D-Ag D-Na	<0.01	-	-	-	<0.01
Socium	D-Na	459	-	-	-	69
Strontium	D-Sr	2.80	-	-	-	0.065
Thallium	D-T1	<0,1	-	-	-	<0.1
Tin	D-Sn	<0.03	-	-	-	<0.03
Titanium	D-Ti	<0.01	-	-	-	<0.01
Vanadium	D-V	<0.03	-	-	-	<0.03
Zinc	D-Zn	<0.005	-	-	-	<0.005
						-

APPENDIX E

•

.

۲

- D

-

REFERENCES

•

REFERENCES

.

- 1. Application Requirements for a Permit Approving the Mine Plan and Reclamation Program Pursuant to the Mines Act S.B.C. 1989, C.56, draft, British Columbia Ministry of Energy, Mines and Petroleum Resources, Mineral Resources Division, Mine Review and Permitting Branch, 1995.
 - 2. Environmental Assessment: Inland Island Highway Highway 4A to Menzies Bay. Soils, Vegetation and Agriculture. Volume II: Map Annex, Talisman Land Resource Consultants, 1989.
 - 3. Fisheries Impact Assessment of the Inland Island Highway, Volume 3: Section 441 -Cowie Creek to Trent River. Preliminary Alignment Chainage Stations 348 + 00 to 534 + 00, SHIP Environmental Consultants Ltd., 1993.
 - 4. Island highway Project: Recreational Impact Study, Crippen Consultants, 1991.
 - Island Highway Planning and Preliminary Design Project: Wildlife Resource Assessment, D.A. Blood and Associates Ltd., 1991.
 - 6. *Terrain Evaluation, Highway Location Study, Mud Bay to Menzies Bay*, Ministry of Transportation and Highways, Geotechnical and Materials Engineering Branch, 1988.
 - 7. Island Highway, Qualicum Beach to Campbell River, Assessment of Water Resources, Norecol Environmental Consultants Ltd., 1990.
 - 8. Tsable River Bridge #3070, Vancouver Island Highway, Geotechnical Report, Site Conditions, Leabridge Consultants Ltd, 1995.
 - 9. Geotechnical Drilling Investigation, Qualicum to Menzies Bay, Vancouver Island Highway, Ministry of Transportation and Highways, Geotechnical and Materials Engineering Branch, 1990.
 - 10. Preliminary Design Report, Mud Bay to Trent River, Section 441. Prepared for Island Highway Planning and Preliminary Design Project, Highway 4A to Menzies Bay), Crippen Consultants, 1991.
 - 11. Inland Island Highway Planning & Preliminary Design Project, Noise Impact Assessment Component "End of Project Report", Wakefield Acoustics Ltd., 1991.
 - 12. Surface Water Data Reference Index, Environment Canada, 1991.
 - 13. Terrain Classification system for British Columbia (Revised Edition), Ministry of Environment, Lands and Parks, 1988.

- 14. *Guidelines and Standards for Terrain Geology Mapping in British Columbia*, draft, compiled by J.M. Ryder for the Earth Sciences Task force of the Resources Inventory Committee (RIC), 1994.
- 15. Luttmerding et al., *Describing Ecosystems in the Field*, Ministry of Environment, Lands and Parks, 1990.
- 16. Kenk and Cotic, Land Capability Classification for Agriculture in British Columbia, Ministry of Environment, Lands and Parks.
- 17. Day, J.H., L. Farstad and D.G. Laird. 1959. *Soil Survey of Southeast Vancouver Island and the Gulf Islands.* Report No. 6 of the British Columbia Soil Survey. Research Branch, Canada Dept. of Agriculture, University of British Columbia, and British Columbia Dept. of Agriculture.
- Jungen, J.R. 1985. Soils of Southern Vancouver Island. Ministry of Environment (MOE) Technical Report 17. Report No.44, British Columbia Soil Survey. Surveys and Resource Mapping Branch. Victoria. August 1985.
- 19. Approved and Working Criteria for Water Quality 1994, Water Quality Branch, Environmental Protection Department, Ministry of Environment, Lands and Parks, February, 1994.
- 20. Guidelines for Canadian Drinking Water Quality, 4th edition, Health and Welfare Canada, 1989.
- 21. Guidelines for the Design and Operation of Settling Ponds Used for Sediment Control in Mining Operations, Preliminary Draft, Ministry of Environment, 1980.

3.

MINE PLAN

3.1 Mine Plan Overview

Surface drilling in 1991, 1996 and 1997 confirmed in situ coal resources of 39,000,000 tonnes in measured, indicated and inferred categories, located 50 to 500 metres below surface.

A high resolution reflection seismic survey in 1997 identified structural conditions and coal seam, defined the faults and coals seams dislocation along faults zones.

Washability tests of the coal core were conducted in the Loring Laboratories in Calgary.

Samples for water quality analysis and acid rock drainage potential were collected and evaluated.

There are no underground workings at the site.

A bulk sample, approximately 90,000 tonnes, is required to confirm the washability of the coal and establish quantities of metallurgical and thermal coal that can be produced. Evaluation of mining conditions and economics of mining will proceed concurrently.

It is estimated that 90,000 tonnes will yield ±60,000 tonnes of clean coal. This quantity will provide enough product for both thermal and metallurgical burn tests in customers plants.

In order to obtain the bulk sample an underground exploration and test mining plan is submitted. No open pit operations are planned at this time. All coal will be transported to the Quinsam Coal Preparation plant for processing.

Due to the thin nature of the No. 4 Seam (less than 1.5 metres) it is not considered economic to mine in this area. Due to high ash and sulphur content in the No. 3 Seam, the economics of underground mining in this zone are questionable. A 20 tonne sample will be removed from the No. 3 Seam for further quality testing and evaluation.

The bulk sample will be extracted from No. 1 Seam. (Please refer to the Geological Section of this submission, Drawing No. 97-B-68 and 69.)

The initial development will be in the sandstone and siltstone by twin declines until No. 1 coal seam is reached. The workings in coal will comprise mains, section development and partial depillaring.

The sizes of the underground openings in coal, pillars and roof support method will be evaluated during the bulk sample program for the final design of future mining.

3.2 Development Schedule

The excavation in the sandstone is expected to take 3 months. The bulk sample will proceed at the rate of 1,000 tonnes per day. Please refer to T'Sable River Project Schedule.

TSABLE RIVER PROJECT SCHEDULE

, -

 \bigcirc

			9				_	-		_	_						_		_			_		_			_											99	0										
		M	AR	ĊĦ	AF	RIL			MAY	Y		,	JUL	NE		Ĵ	JUL			AU				SEF		ji		DCT				IOV			DEC			JAI			FE			MA				PR	
ітем		1 1	2 3	4	1 2	3	4 1	2	3	4 5	5 1	2	3	4	1	2	3	4	1 2	2 3	4	5	1	2	3 4	1	2	3	4	5	1 2	3	4	5 (8 7	8	91	10 t	1 12	13 1	4 18	5 16	17	8 1	9 20	21	22 1	23 2	4 2
1	Demobilize Orliling/Selamic 1st phase									T					1	1								T							T											\Box	Ш					T	
2	Data Evaluation & Reporting		i.				JL.																					Í		j													\Box					1	
3	Application for New Program (Seismic Phase 2)		1							T										Γ																L												1	
4	Data acquisition/Field Work (Seismic Phase 2)						-iL	5	. L	Ē	Ŀ							L	L																														
5	Application for New Program (Drilling Phase 2)					N					ľ) '		1	Ì									1					Ĺ													\Box						
6	Field Work (Drill Program Phase 2)										Ź			5				3																															
7	Reclamation/Timber Removal Phase 1 (Seismic/Drilling)															1							1		1								j			Γ				\Box								T	
8	Data Evaluation & Reporting (Seismic Phase 2)															i									1																		Π						
9	Reclamation/Timber Removal Phase 2																	5	1																	Π				\Box			Π						Τ
10	Engineering and Plenning								_]_			1_										ŀ				Ì					1					<u> </u>													
A	Mining Equipment Selection & Procurement						Υ.															1							_[٦Ľ		-											\Box			Π			
8.	Materials Movement Selection & Procurement		Π			1.0																	T		1					JE	<u> </u>					I					· [-	\Box		ł		\Box			Τ
C.	Electrical Power Distribution Selection & Procurement		П			L .											Τ								1																		Π					Т	T
Đ.	Project Budget			- i		2					1				. 1	1																																	
11	Application for 100,000 tonne bulk sample	\square	\square		1					ł		Γ		\square		Т				1									Т		1.	Γ				\Box		T					Π	Т			T	T	Т
A	Mine Planning & Lay-outs			j		4											1															Γ.			-		\Box		1										
	Geology and Coal Quality				1											Ì																																	
C.	Environmental Assessment	\Box	\square		1			3				Γ		\square																										\Box			Π						
Đ.	Reclamation Plan			_ [[-						Т		ł								1-									- "																				Ţ
12	Bulk Sample Surface Rights Negotiation						ر با د		Â.][\Box						
13	Bulk Sample Application Review & Approval								2				5	5	2	÷.,					-		-			Ĺ																							
14	Bulk Sample Site Preparation				-					T	Т			\square		i					Γ	[j 🗌				ļ		-								\square									
Α	Topsoil stripping/ditching-Drainaga works - Portal area *				1											3	5									<u> </u> _			Ţ			-																	Τ
в.	Topsoil stripping/ditching-Drainage works - Waste Disposal Area	\square			1						╢	Γ				E	2		4						1-									Т						\Box			\Box			\Box	T		T
C.	Surface Shop/Temporary Mine Dry/Office				1			Π	T	Τ						Τ	(ŝ	T				1		T									1				Π	IΤ	Ţ		Π						Т
Ð	Collaring/Concrete work - Portals			_						Τ														Τ					1												Τ		Π					T	T
	Power Distribution (temporary)								I			Τ							1								ľΠ				.														Τ				
F.	Power Distribution (B.C. Hydro Tie-in)	\square						Π	T			T						T	Τ						1	5					1	1		Т	1		\Box						Π	Т					
15	Rock cutting/slope development	\square						[]		1						ţ					XCK			Ţ						- jj			(-	T				1		\square								T	T
										1		T	1				1			1	2	3	4	5 (5 7	8	9	10	11	12 1	3 14	15	16 1	17 14	s										Τ	Π		T	T
	(Assume Single heading advance of 15 metres per day)				1	\square		T		1		1	1		1				1		i.÷		14						$\mathbb{N}_{\mathbb{N}}$		1			<u>ال</u>									Π				T	T	Т
16	Coal Removal							Π		-1-		1-	1	r I	Í	-	-	-1-	1	1				T	_			T			T				1		T)			\Box	Т		Π				T	T	T
-	No.4 Seam (intersected during Week No.14 of drivage) 10 tonnes		1-1						\neg	┭		\top					Ť	╞	1	1				1			Π	T	1	1		1		-1-	1		L)				1	T	\square		1		T	T	T
	No. 3 Seam(intersected during Week No. 16 of drivage) 20 tonnes		11		+		ļ	11	Í	╈		1				1	1	-					-†-		+	j –			1				24		1-					\square	-	П		1	\top		T	+	+
_					1		╢					Í	\square	П		+			\top	1					İ	1					\top			\top		1	LL,		7-1		1	50.0	000	1	T		Ţ	90,00	x o
	No. 1 Seam (intersected during Week No. 18 of drivage) 90,000 tonnes	H		¦				\dagger	\neg	-1-	Ť	1-	†	H	\square	İ		~ -	+	+			1	-+-	-		 	1	-†		\top			╈	37		25	12	2.8				F	Æ	<u>, 1</u>			S.F	2
- C					ī.	1.1.1.	14				_1	+	1	لسبا	Ĺ	_	t				1		_								_		_الد _ ا	_	- فكالتب		- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -		- - - -	Distant in		1110	1000	تا جنب	للسجع	1 °	- 100 P		- - -

* Items 14A & 14B Require Preliminary Approval to Proceed

SCHED2.WK4 issued 04/25/97

,

-

3.3 Existing and Projected Surface and Underground Development (Drawing No. 97-D-075 and 97-D-076)

Surface Facilities

In order to minimize the surface disturbance, only portable surface facilities necessary for the project will be set-up.

They comprise mine dry, office and first aid complex, mechanical shop, warehouse trailer and electrical power distribution grid.

The area for the surface facilities will be stripped of topsoil and till, at an estimated combined thickness of 1 metre. In the immediate area of the portals as much as 3 metres of glacial till/weathered bedrock will be removed in order to collar the openings in competent rock.

Sandstone and siltstone from the underground excavation will be stored near the portal and serve as coal stockpile pad. The water management system, including a settling pond and polishing pond, will have minimum retention time of 10 hours.

All surface facilities will be of temporary nature and will be removed from site after the completion of the program.

Access to the Coal Seam

Two parallel declines, conveyor road and supply road, excavated at -18% were designed to access No. 1 Seam.

The conveyor road will be cut 2.5 m high and 6 m wide. The supply road will be cut 2.5 m high and 5 m wide.

Connecting crosscuts will be excavated at 100 m intervals. Two temporary sumps will be cut in the supply road.

The sandstone has a compressive strength of 49 to 90 MPa (7,000 to 13,000 psi). Roof support will be 1.8 m long mechanical bolts installed on 1.5 m x 1.5 m pattern. Screen and/or straps will be used as required.

Excavation in the Coal Seam (Drawing No. 97-D-076)

The excavation in the coal seam will consist of the mains (supply, conveyor and return air roads), and mining one panel (section).

The main entries will be cut 5 metres wide and 2.5 metres high, leaving 30 metre pillars between the entries.

Connecting crosscuts will be cut at 42 m intervals. The panel will be excavated as shown on Drawing No. 97-B-073. Underground sump will be cut in coal and will have minimum retention capacity of 10 hours.

Underground water will be discharged from the underground sumps into the settling pond on surface, will flow to the polishing pond and from there into the tributary of the T'Sable River, as shown on Drawing No. 97-D-075.

Ventilation will be provided by a main fan located on surface near the portal and auxiliary ventilation fans underground.

The seam is expected to liberate 3 m³ of methane per tonne of coal mined. With an anticipated production of 100 tonnes/hour, air movement of 60,000 cfm will be needed to dilute methane concentrations to 0.3%. Approximately 15,000 cfm will be needed to operate LHD equipment. A 75HP main exhausting fan will be installed to provide ventilation. This fan

is capable of producing 180,000 cfm which is more than adequate for the 90,000 tonne bulk sample mined.

The excavation will be by cutting. Drilling and blasting will be employed in the initial stage of the declines in the sandstone.

The initial excavation work, trench in the sandstone, ventilation raise, collars and the first part of the entries will be by drilling and blasting, until the conveyor system and the ventilation is established.

A separate application, as per the Health, Safety and Reclamation Code for Mines in British Columbia for permission to store and use explosives, will follow.

The equipment will be:

 Continuous miner (roadheader, Dosco or Alpine) 	1
Joy shuttle cars	2
Stamler feederbreaker	1
Roofbolter	1
Conveyors	2

The Company is finalizing the selection for the roadheader.

Applications for certification to operate the equipment underground will be submitted under separate cover.

The strength of the sandstone and acid rock drainage potential were established from the drill core.

Furthers tests and evaluation will be conducted during the underground excavation:

Acid Rock Drainage Potential

Samples will be taken every 60 linear metres and evaluated. The quality of the discharge water will be monitored and remedied if required.

Pillar Stability During Depillaring

Two stress cells will be installed in the pillar in the depillaring area.

Roof Support

Multiple extensometers will be installed in the roof at the junction of the main and crosscut area.

3.4 Access and Transportation

The surface plant is located on Province of British Columbia land. The ownership and under-surface rights are shown on Drawing No. 96-D-034.

The plant is situated 3 km west of the Island Highway. Access to the site is 600 metres south of the T'Sable River bridge via the Holiday Main Road, last 2 km located on MacMillan Bloedel land.

Only 200 metres of new road (bypass) will be constructed.

The traffic density, based on 12 hour/day transportation, will be 3 trucks per hour.

Twenty-eight (28) people will be employed per day. Maximum shift crew will be 9 miners and supervision.

3.5 Processing Plant Description

A processing plant will not be built. All coal will be hauled to the Quinsam Mine for processing.

Tailings will not be produced.

3.6 Waste Rock and Topsoil Storage

Waste rock is estimated to be <20,000 m³ of sandstone and siltstone. This waste rock will be excavated and placed immediately in front of the portals and will serve as a raw coal storage pad for the bulk coal sample as well as a truck loop base for the haul trucks. The pad will average 2 metres (6.5 feet) deep over a rectangular compacted area measuring approximately 170 metres by 80 metres. The sides will be sloped less than 2:1. The pad will be sloped to the North and East of Cowie Creek to facilitate proper drainage.

Acid/base analysis will be done every 60 metres of advancement in each roadway, and at other locations, based on lithology changes. Photo documentation of placement will be done to delineate material location in the event of potential ARD. Analysis will be in accordance with established procedure and criteria outlined in Permit C-172 (issued to Quinsam Coal).

Soil storage will be above (west) the portals. The volumes are estimated to be 26,000 m³ using a swell factor of 1.3. The placement will be 4.5 to 5 metres deep over a rectangular area measuring 140 m x 50 m. The slopes will be less than 2:1 and will be stabilized immediately after placement with fall rye or winter wheat. Soil horizons will be professionally evaluated prior to removal to determine growth potential. An ICP of the soil to determine metal presence will also be done.

Substrate and glacial till/weathered bedrock will be placed separately beside the topsoil storage area. The volume will consist of approximately 4,500 m³, 2 metres deep in a rectangular area of 2,400 m². Acid/base analysis will be conducted on the material as well as an ICP to identify metals.

3-8

3.7 Additional Minesite Infrastructures (Drawing No. 97-D-075)

There will not be accommodation on site. The mine personnel will be accommodated in the Courtenay and Cumberland area, 20 km from the minesite. The following temporary structures will be erected:

- dry/first aid/office complex
- Weatherhaven-type repair shop
- warehouse trailer
- 2 generators
- stacker conveyor
- concrete foundations will be constructed for the main underground conveyor drive and for the stacker conveyor
- electric power distribution system (Drawing No. 97-B-71)
- tank farm

The portable electric generating sets will be trailer mounted, with auxiliary double-walled fuel storage tanks. A tank farm, consisting of double-walled fuel tanks and a double-walled waste oil collection tank, will be installed as shown on the plan.

The warehouse trailer/repair shop will provide storage for consumable items and a covered area for equipment repairs. A good supply of bagged limestone dust will be stored on site at all times.

All mobile and stationary equipment will conform to the Health, Safety and Reclamation Code for Mines in British Columbia.

3.8 Domestic Water

Domestic water needs will be satisfied by a well, as shown on Drawing No. 97-D-075. The water will be used for underground dust suppression, as well as showers and washrooms in the mine dry. Surplus water from underground will be pumped to the settling pond system. Gray water from the mine dry will be disposed of in a drain field. Sewage will be contained in a below-ground holding tank(s) and trucked as needed to authorized disposal facilities.

Domestic water volume requirements will be about 4,000 litres, while dust suppression is expected to need <3,000 litres (550 gal). Total needs will be less than 8 m³ per day. There will be a reservoir tank between the well site and the end use points. Manual chlorination may be necessary and will involve placing tablets into the reservoir on a regular basis. Domestic water will meet health regulations.

Seepage into the mine from strata will be handled by 58HP submersible pumps and 8" discharge line capable of forcing about 500 U.S. gallons (initially) to the surface settling ponds. Subsurface sumps will be installed to store and settle water before it is transferred to surface.

3.9 Water Management

Water quality will be monitored in the underground sumps for pH, total and dissolved metals, sulfate and alkalinity. Discharge from the polishing pond will also be monitored for total suspended solids, pH, conductivity, alkalinity, sulfate, dissolved and total metals. Discharge volumes will be measured by an installed weir at the outlet of the polishing pond. A sonic or dipping device may also be installed for continuous measurements. Monitoring frequency will be weekly and during events. Water quality will conform to Provincial water quality objectives. Cowie Creek will be monitored above and below the project for the same parameters as the polishing pond.

Diversion ditches, as shown on the surface map, will divert clean water away from the working areas and around the project. The polishing pond discharge will combine with the clean diverted water. From there the water will flow in an established broad wetland channel to the T'Sable River which is approximately 1 km distance from the project.

Catchment ditches will collect surface runoff from the topsoil and till storage areas, as well as the working yard area and be conveyed to the settling pond for 10 hours retention time before release to the polishing pond.

The settling pond will accommodate a 1 in 200 year flood event. Flocculation facilities can be installed in either or both ponds should water quality require it. Liming facilities can also be installed as above should ARD develop.

Tsable River Coal Project

Geotechnical Assessment for Bulk Sample Application

1.0 Lithology

A typical geological cross-section in the area of the proposed access tunnels and bulk sample workings, as shown in the Drawing No. 97-D-076, can be seen in the exploration hole TS 96-06C (Figure 1.1). The overburden above the targetted No. 1 seam consists mainly of interbedded sandstones and siltstones, with minor intervals of coal, shales and mudstones. The access tunnels will intersect several fault zones which may range from a single fault plane to a "troubled ground" zone ten or more meters wide.

Lithology of the immediate roof above the No.1 Seam is relevant for roof support in development entries and for depillaring test in a small panel designed for acquisition of the bulk sample. The exploration holes located near the area of the proposed bulk sample panel show the following rock intervals above the No.1 seam.

Hole No.	Depth to Seam No.1 (m)	Mudstone/Siltstone thickness above seam (m)	Sandstone thickness (m)
TS 96-05-C	158.0	13.0	11.0
TS 96-06-C	227.0	5.0	17.0
TS 96-13-C	261.0	6.9	15.3
TS 96-16-C	306.0	7.0	18.5
TS 96-17-C	84.2	6.2	20.6
TS 96-23-C	100.0	- 4.0	32.9
TS 96-24-C	120.4	2.4	32.0
TS 96-25-C	173.0	27.0	36.5
TS 91-10	113.2	10.0	15.6
TS 91-12	114.9	4.2	9.3
<u>TS 91-13</u>	203.8	11.0	8.3
Averages		8.8	19.7

The mudstone/siltstone formation overlying the seam ranges from less than 3 m to nearly 30 m, with average thickness of about 9 m. It is overlain by a massive sandstone which is on average about 20 m thick.

-1-

2.0 Pillar design for Bulk Sample Panel.

Because in some places the sandstone can be close to the No.1 seam, it is not possible to accurately predict the caving characteristic of the overburden. For this reason, the bulk sample panel is proposed with only a partial pillar recovery. With the sandstone formation in a proximity of the seam, it is important to avoid panel-wide caving and maintain a long term support of overburden, particularly in a new mining situation. Pillars left in the mined-out area should be sized to provide such support. Please note that rock properties used below are based on the test performed on Qunsam rock samples as outlined in the 1996 CANMET study entitled "Design Methods to Optimize Underground Layout and Support at the Quinsam Coal Mine".

Design Parameters.

1.	Depth of overburdenup to 200 m
2.	Average uniaxial strenth of coal
3.	In situ uniaxial strength of coal pillars7.0 MPa
4.	Unit weight of rock mass

Mining Layout.

The proposed mining layout is shown in the attached Drawing No. 97-B-03. Because of the seam dip in the proposed Bulk Sample Pannel, the angle of intersections will be at 60° . In order to reduce the span at intersections, the width of the development entries has been set at 5 m, 1 m less than at Quinsam mine.

Please refer to Drawing No. 97-B-03 for the minimum dimensions of pillars, represented by inscribed circles. The small remnant pillars will have a width to height (W/H) ratio at 4.2m / 3.0m = 1.4, while the large bearing pillars will have W/H a ratio of 16m / 3m = 5.3.

Areal extraction:	100% * {1 - (16m * 30m - 5 * 8m * 3.5m - 2 * 11.5m * 3.5m) / [(16m + 5m) * (30m + 5m)]} = 65%
Maximum lithostatic stress:	25.0 kNm ⁻³ * 200m / 1000 = 5.0 MPa
Tributary stress:	5.0 MPa / (1 - 0.65) = 14.3 MPa

The average strength of pillars can be calculated according to Bieniawski's formula. For the large pillars:

7.0 MPa * (0.64 + 0.36 * W / H) = 7.0 MPa * (0.64 + 0.36 * 16m / 3m) = 17.9 MPa

For the small pillars:

7.0 MPa * (0.64 + 0.36 * 4.2m / 3.0m) = 8.0 MPa

Load balance:

(16m * 16m * 17.9 Mpa + 4 * 4.2m * 4.2m * 8.0 MPa) / (21m * 35m * 5.0 MPa) = 1.4

Load capacity of pillars exceeds the maximum lithostatic load by about 40%. This safety margin is considered sufficient to provide a global support for the mined out area of the Bulk Sample Panel. Only local caving between the pillars will occur, which will not affect the overall panel stability.

3.0 Roof Support.

Lithology and structural geology of the bulk sample area is similar to that of the Quinsam Mine, where extensive studies and tests of roof support resulted in a reliable support system. Roof support conditions at Quinsam are very similar to those that are anticipated in the Bulk Sample Panel at Tsable River mine.

The attached summary from the 1996 CANMET study of Quinsaqm mining methods and practices outlines rock conditions and roof support methods used at Quinsam. Table 1 in the CANMET Report shows average values of rock mechanical properties and Table 2 includes a typical rockmass classifications.

3.1 Roof Support in good and fair ground conditions.

Most of the rock interval intercepted in the Access Tunnels will be competent siltstone or sandstone, offering fair to good ground conditions with RMR rock classification of 54 to 69 (Table 2 in CANMET Report). According to Bieniawski (Figure 3.1), in these ground conditions, standard $\frac{34}{7}$ mechanically anchored rock bolts 1.5 m to 1.8 m long, installed on 1.5 m x 1.5 m pattern, are required. It is recommended to use $\frac{34}{7}$ x 1.8 m mechanical rockbolts throughout.

3.2 Roof Support in poor ground conditions.

In some parts of the Access Tunnels. i.e. in and around the coal seams, in weak siltstone and in "troubled ground" around the faults, it is anticipated that rock conditions will be fair to poor, with RMR rock classification at 40 to 20. In these conditions, it is recommended to utilize the rock support system developed and successfully used at Quinsam Coal mine, which is more conservative then that recommended by Bieniawski (Figure 3.1). Please refer to the Quinsam drawing No. 96-A-019 for the 2 North Mine roof support rules which will be utilized where poor rock conditions exist in Access Tunnels.

As the lithology of the roof in the Bulk Sample Panel will be nearly the same as in the 2 North mine of Quinsam, it is recommended that these roof support rules are adapted in development of Bulk Sample Panel at Tsable River mine. As shown in the Drawing 97-A-040, the width of entries has been reduced to 5 m with intersections at 60° .

4.0 References

Cullen, M., Design Methods to Optimize Underground Layout and Support at the Quinsam Coal Mine, CANMET, DSS File Number: 002SQ.23440-3-9105, 1996

Bieniawski, Z. T., Rock Mechanics Design in Mining and Tunneling, A.A.Balkema, Rotterdam, Netherlands, 1984

April 21, 1997

Jeusleur

Dennis Z. Mraz, P.Eng.

TSABLE RIVER COAL PROJECT LITHOLOGY LOG

(DRILLERS LOG)

HOLE NUMBER : CO-ORDINATES : ELEVATION : DATE DRILLED: DRILLER: TS 96-06C 5484920.1 N. - 364378.7 E. 112.8 m July 7, 1996 Hi-Rate Drilling

DEPT	Ή <u>(</u> m)	DESCRIPTION
From	То	
0.0	3.3	Glacial till
3.3	85.0	Siltstone; medium grey; mudstone interbeds
85.0	100.0	Sandstone, medium grey; hard
100.0	1 118.0	Siltstone; fine sandy
118.0	142.0	Sandstone; siltstone interbeds
142.0	143.0	Mudstone; carbonaceous
143.0	144.0	ICOAL, No 5 Seam?
144.0	145.0	Mudstone; sandstone interbeds
145.0	167.0	Sandstone; medium to coarse; hard
_ 167.0	181.0	Sandstone; siltstone/mudstone interbeds
181.0	183.0	COAL; shaly; No. 4 Seam?
183.0	199.0	Siltstone; grading to sandstone. STarted coring 182.9
199.0	201.0	COAL, some shale; No. 3 Seam
201.0	201.5	Shale; soft
201.5	202.0	COAL; No. 3 Seam
202.0	205.5	Mudstone; silty
205.5	222.0	Sandstone; medium grey; hard; massive
222.0	226.0	Mudstone; siltstone interbeds
226.0	227.0	Mudstone; coaly
227.0	230.0	COAL: No. 1 Seam; some shale
230.0	231.3	Mudstone; silty
231.3	237.3	Sandstone; Siltstone interbeds
		END of HOLE

FIGURE 1.1

١

ROOF ROCK CLASS	ROCK	ROCK	SUPPORT SPE	CIFICATIONS	ALTERNA	ite suppo	ORT PATTERNS	SPECIFICATIONS
<u> </u>	RATING (RMR)	HEIGHT HT(FT)	MECHANICAL BOLTS	RESIN BOLTS	MECHANICAL BOLTS/POSTS		RESIN BOLTS/POSTS	FOR POSTS
l /Ery good	90	2.0	L : 2.5* S : 5* x 5* C : 40 # : 5/8" C : 6.2 tonm				Not composites]	
	80	4.0	1. : 2.5" S : 5' x 4.5' C : 60 (40) # : 3/4" (7/8") C : 11 tons	L : 2.5' S : 5' x 5' G : 60 \$: 3/4" C : 12 tone	<u>I I I</u>			
11 GCOD	70		L : 3.0' S : 4' x 4' G : 60 # : 3/4" C : 10 tone	L : 3.0* S : 5* x 5* G : 60 \$: 3/4" C : 18 tone	<u>III</u>			
	60		L : 4.0 ⁴ S : 5 ⁴ x 5 ⁴ G : 60 \$: 5/8" C : 9 tons	L : 4.0 ⁴ S : 5 ⁴ x 5 ⁴ G : 60 \$: 1" C : 23.7 cons				ب _ل = ۲.۵" ۵ ₀ = ۱0*
111	50	10.0	\$: 5' x 5' G : 40 \$: 3/4"	L : 4.0' S : 5' x 4' G : 60 \$: 1" C : 23.7 tons				<u>ې د مې</u> پ _p = 6.5" ۶ _p = 10°
FAIR	40	12.0	S : 5' x 5' C : 40 # : 3/4"	L : 4.0' S : 4' x 4' G : 60 4 : 1" C : 23.7 tons				+ _p = 6.5" S _p = 7.5'
IV POOR	30	14.0	S : S' x 5' G : 40 # : S/8"	L : 5 ¹ S : 5 ⁴ x 5 ⁴ G : 60 4 : 3/4" C : 12 cons				+ρ = 5.5" Sμ = 5*
	20		S : 4' x 4.5' 2 : 40 • : 5/8"	L : 5 ⁴ S : 5 ¹ x 5 ⁴ G : 60 4 : 3/4 ⁴¹ C : 12 tons	J J J J J J J J J J			4 _μ = 6.0"
= bolt lengtl = bolt spaci = grade of s	ng		= bolt diamet = bolt capacity	4	$\phi_p = \text{post diameter}$ $S_p = \text{post spacing}$		1188° 234	

~ I

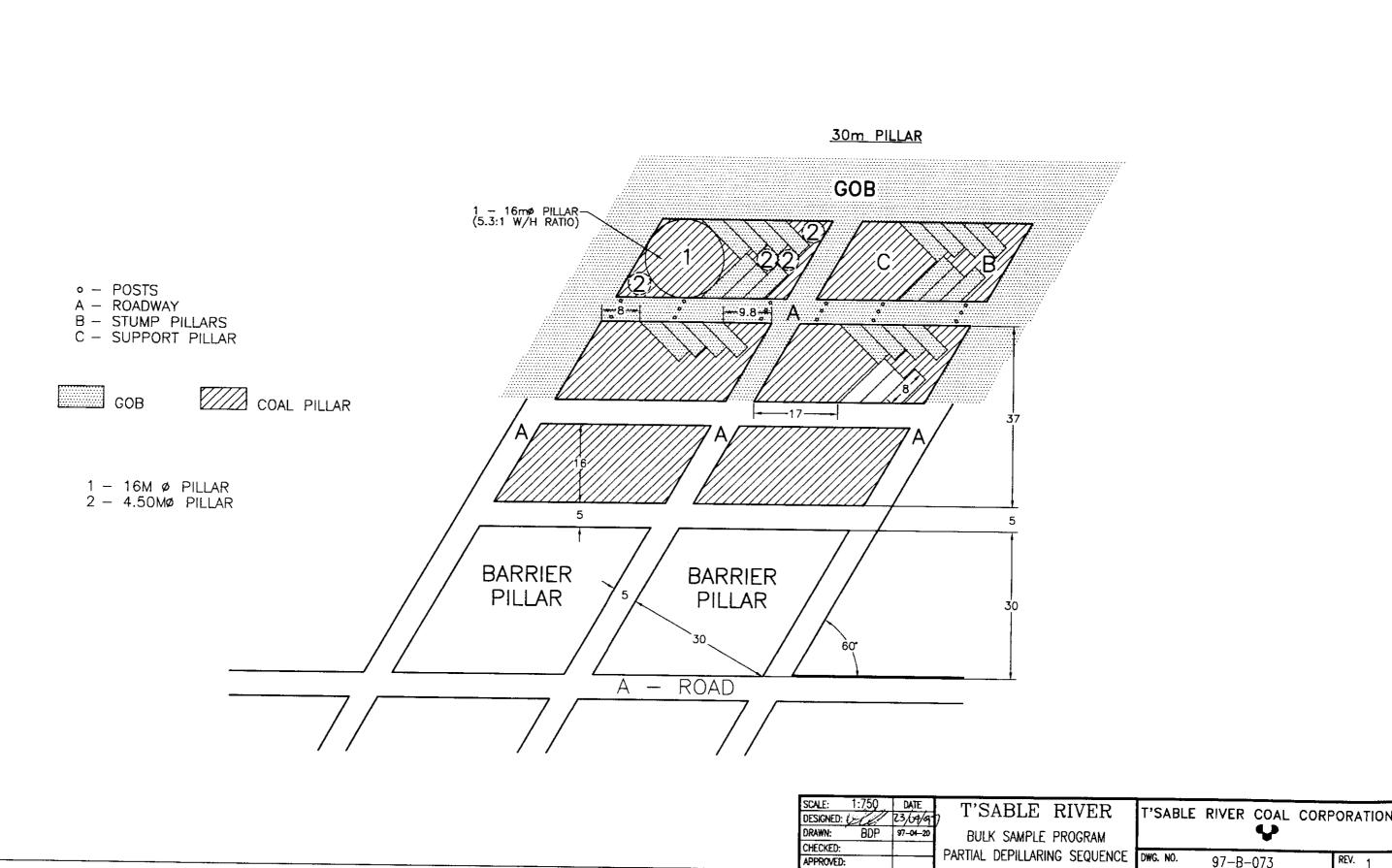

Roof-support design chart for coal mining-Entry width: 20-ft

FIGURE 3.1

- -- ---

254

Guided design

ION
1