COAL ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: Coal assessment report for the Hudette coal property, British Columbia

TOTAL COST: $1,769,032

AUTHOR(S): M. Sultan

SIGNATURE(S):

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): CX9-051

PROPERTY NAME: Hudette

COAL LICENSE(S) AND/OR LEASES ON WHICH PHYSICAL WORK WAS DONE:
Coal Licences 392474, 392476, 392550, and 392553

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:

MINING DIVISION: Liard

NTS / BCGS: NTS 093O/8; BCGS 093O.050

LATITUDE: 55° 28’ 22" North; Longitude: 122° 05’ 17" West (at centre of work)

UTM Zone: 10N EASTING: 557649 NORTHING: 6147791

OWNER(S): Walter Canadian Coal Partnership

MAILING ADDRESS: 235 Front Street, Unit 200, Tumbler Ridge, BC, V0C 2W0

OPERATOR(S) [who paid for the work]: Walter Canadian Coal Partnership

MAILING ADDRESS: 235 Front Street, Unit 200, Tumbler Ridge, BC, V0C 2W0

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralisation, size and attitude), coal, Gething Formation, Dresser Formation, Crassier Group, Beaudette Group, Fort St. John Group, anticlines, synclines, thrust faults

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: Coal Assessment Reports 522, 523, 524, 525, 526, 582, 583, 584, 585, 586, 587, 588, 888, 936, 966, 972, 979, 984
SUMMARY OF TYPES OF WORK IN THIS REPORT

<table>
<thead>
<tr>
<th>Type of Work</th>
<th>Extent of Work (in metric units)</th>
<th>On Which Tenures</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOLOGICAL (scale, area)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground, mapping</td>
<td>1:10,000 over 1764 hectares</td>
<td></td>
</tr>
<tr>
<td>Photo interpretation</td>
<td>1:20,000 over 1764 hectares</td>
<td></td>
</tr>
<tr>
<td>GEOPHYSICAL (line-kilometres)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground (Specify types)</td>
<td>nil</td>
<td></td>
</tr>
<tr>
<td>Airborne (Specify types)</td>
<td>nil</td>
<td></td>
</tr>
<tr>
<td>Borehole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gamma, Resistivity, in 55 boreholes</td>
<td>10890.52 m</td>
<td>392474, 392476, 392550, and 392553</td>
</tr>
<tr>
<td>Resistivity in 55 boreholes</td>
<td>10890.52 m</td>
<td>392474, 392476, 392550, and 392553</td>
</tr>
<tr>
<td>Caliper in 55 boreholes</td>
<td>10890.52 m</td>
<td>392474, 392476, 392550, and 392553</td>
</tr>
<tr>
<td>Deviation in 56 boreholes</td>
<td>11003.38 m</td>
<td>392474, 392476, 392550, and 392553</td>
</tr>
<tr>
<td>Dip in 22 boreholes</td>
<td>4681.05 m</td>
<td>392476, 392550, and 392553</td>
</tr>
<tr>
<td>Others Density in 55 boreholes</td>
<td>10890.52 m</td>
<td>392476, 392550, and 392553</td>
</tr>
<tr>
<td>Neutron in 56 boreholes</td>
<td>11161.34 m</td>
<td>392476, 392550, and 392553</td>
</tr>
<tr>
<td>Core partial or complete in 9 boreholes</td>
<td>704.19 m</td>
<td>392476 and 392553</td>
</tr>
<tr>
<td>Non-core (rotary) in 53 boreholes</td>
<td>10169.43 m</td>
<td>392474, 392476, 392550, and 392553</td>
</tr>
</tbody>
</table>
SAMPLING AND ANALYSES

<table>
<thead>
<tr>
<th></th>
<th>Total # of Samples</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>56</td>
<td>392476 and 392553</td>
</tr>
<tr>
<td>Proximate</td>
<td>56</td>
<td>392476 and 392553</td>
</tr>
<tr>
<td>Ultimate</td>
<td>28</td>
<td>392476</td>
</tr>
<tr>
<td>Petrographic</td>
<td>28</td>
<td>392476</td>
</tr>
<tr>
<td>Vitrinite reflectance</td>
<td>28</td>
<td>392476</td>
</tr>
<tr>
<td>Coking</td>
<td>nil</td>
<td></td>
</tr>
<tr>
<td>Wash tests</td>
<td>56</td>
<td>392476 and 392553</td>
</tr>
</tbody>
</table>

PROSPECTING (scale/area)
- nil

PREPARATORY/PHYSICAL

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Line/grid (km)</td>
<td>nil</td>
</tr>
<tr>
<td>Trench (number, metres)</td>
<td>nil</td>
</tr>
<tr>
<td>Bulk sample(s)</td>
<td>nil</td>
</tr>
</tbody>
</table>
Appendix B and Appendix C remain confidential under the terms of the Coal Act Regulation, and have been removed from the public version.

1 Table of contents

Serial and section title

1 Table of contents 1

2 Introduction 5

2.1 Scope of report 5

2.2 Objectives 5

2.3 Property description 5

2.4 Location and access 10

2.5 Climate 10

2.6 Geographic setting 10

2.7 Acknowledgements and professional responsibility 10

3 Exploration 12

3.1 History of exploration 12

3.1.1 Regional exploratory context 14

3.1.2 Historical drill hole data 15

3.2 Current exploration 21

3.2.1 Year-2010 geological mapping 21

3.2.2 Current drilling 22

3.2.2.1 Year-2011 drilling 28

3.2.2.2 Year-2012 drilling 28

3.2.2.3 Year-2013 drilling 29

3.3 Core logging 29

3.4 Borehole geophysics 30

3.5 Sampling and analytical work 33

4 GEOLOGICAL SETTING 35

4.1 Regional setting 35

4.2 Regional stratigraphy 35

4.2.1 Definition of the Cadomin Formation 35

4.2.2 Definition of the Dresser Formation 36

4.2.3 Stratigraphic sequence 36

4.3 Local stratigraphy 38

4.3.1 Moosebar Formation 38

4.3.1.1 Bioturbated Siltstone Member 40

4.3.1.2 Mudstone Member 41

4.3.1.3 Bluesky Member 41

4.3.1.4 Environment of deposition 42

4.3.2 Gething Formation 42

4.3.2.1 Upper Gething Unit 44
Coal Assessment Report for the Hudette coal property, British Columbia

4.3.2.1.1 Sandstone 45
4.3.2.1.2 Mudstone 45
4.3.2.1.3 Siltstone and pebbly Sandstone 45
4.3.2.1.4 Coal 45
4.3.2.2 Lower Gething Unit 45
4.3.2.3 Environments of deposition 46
4.3.3 Dresser Formation 46
4.4 Regional Structure 48
4.5 Local Structure 48

5 Coal 49
5.1 Coal seam development 74
 5.1.1 A-seam 74
 5.1.1.1 Interval between A-Seam and B-Seam 75
 5.1.2 B-seam 75
 5.1.2.1 Interval between B-Seam and C-Seam 82
 5.1.3 C-seam 82
 5.1.3.1 Interval between C-Seam and D-Seam 82
 5.1.4 D-seam 83
 5.1.4.1 Interval between D-Seam and E-Seam 83
 5.1.5 E-seam 83
 5.1.5.1 Interval between E-Seam and F-Seam 84
 5.1.6 F-seam 84
 5.1.6.1 Interval between F-Seam and G-Seam 85
 5.1.7 G-seam 85
 5.1.7.1 Interval between G-Seam and H-Seam 85
 5.1.8 H-seam 85
 5.1.8.1 Interval between H-Seam and I-Seam 86
 5.1.9 I-seam 86
 5.1.9.1 Interval between I-Seam and J-Seam 86
 5.1.10 J-seam 86
 5.1.10.1 Interval between J-Seam and K-Seam 87
 5.1.11 K-seam 87
 5.1.12 Lower Seams 87

6 Coal quality 88
6.1 Note concerning historic coal-quality data 88

7 Coal-resource estimation 89

8 Reclamation 90

9 Statement of costs 91
Coal Assessment Report for the Hudette coal property, British Columbia

10 References
11 Conclusions
12 Statements of qualifications

Appendices:
A Geophysical logs, core logs and core photographs
B [Confidential] Clean-coal quality
C [Confidential] Clean-coal petrography

1.1 List of tables

<table>
<thead>
<tr>
<th>Serial</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Tenures comprising the Hudette property</td>
<td>6</td>
</tr>
<tr>
<td>3-1</td>
<td>Cross-reference to historic coal-assessment reports</td>
<td>13</td>
</tr>
<tr>
<td>3-2</td>
<td>Location of the historical drill holes in Hudette area</td>
<td>16</td>
</tr>
<tr>
<td>3-3</td>
<td>Coal seam intervals of historic boreholes</td>
<td>17</td>
</tr>
<tr>
<td>3-4</td>
<td>Coal exploration contractors in years- 2011 through 2013</td>
<td>21</td>
</tr>
<tr>
<td>3-5</td>
<td>Current (2011-2013) drilling at Hudette</td>
<td>25</td>
</tr>
<tr>
<td>3-6</td>
<td>Coring intervals in current drill holes</td>
<td>29</td>
</tr>
<tr>
<td>3-7</td>
<td>Geophysical logs run in current boreholes</td>
<td>31</td>
</tr>
<tr>
<td>3-8</td>
<td>Sample inventory</td>
<td>33</td>
</tr>
<tr>
<td>4-1</td>
<td>Thickness of Mudstone and Bluesky member of Moosebar Formation</td>
<td>39</td>
</tr>
<tr>
<td>5-1</td>
<td>Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes</td>
<td>49 to 74</td>
</tr>
<tr>
<td>5-2</td>
<td>Interseam interval (as-drilled and true)</td>
<td>76 to 82</td>
</tr>
<tr>
<td>9-1</td>
<td>Estimated exploratory cost breakdown by activity</td>
<td>92</td>
</tr>
<tr>
<td>A-1</td>
<td>Coring intervals in current boreholes</td>
<td>A-1</td>
</tr>
<tr>
<td>A-2</td>
<td>Geophysical logs run in current boreholes</td>
<td>A-2 to A-4</td>
</tr>
<tr>
<td>B-1</td>
<td>Sample inventory</td>
<td>B-1 to B-2</td>
</tr>
<tr>
<td>B-2</td>
<td>Proximate, sulphur, FSI, light transmission and calorific value, and FSI analysis of clean coal</td>
<td>B3 to B4</td>
</tr>
<tr>
<td>B-3</td>
<td>Ultimate and ash fusion analysis</td>
<td>B-5 to B-6</td>
</tr>
<tr>
<td>B-4</td>
<td>Ash composition analysis</td>
<td>B-7 to B-8</td>
</tr>
<tr>
<td>B-5</td>
<td>Gieseler fluidity and Arnul dilatation</td>
<td>B-9 to B-10</td>
</tr>
<tr>
<td>C-1</td>
<td>Petrographic analysis of clean coal</td>
<td>C1 to C-2</td>
</tr>
</tbody>
</table>

1.2 List of figures

<table>
<thead>
<tr>
<th>Serial</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Generalised stratigraphic section of Peace River coal region</td>
<td>37</td>
</tr>
<tr>
<td>4-2</td>
<td>Geophysical log response of Mudstone member/Bluesky Member contact</td>
<td>40</td>
</tr>
<tr>
<td>4-3</td>
<td>Fining-upward sequence capped by coal seam in upper unit of Gething</td>
<td>44</td>
</tr>
</tbody>
</table>
Neutron and Gamma log response of Dresser Formation

1.3 List of maps

<table>
<thead>
<tr>
<th>Serial</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map 2-1</td>
<td>Tenure Numbers and Historical Drill Holes</td>
<td>7</td>
</tr>
<tr>
<td>Map 2-2</td>
<td>General Location Map</td>
<td>8</td>
</tr>
<tr>
<td>Map 2-3</td>
<td>Regional Location Map</td>
<td>9</td>
</tr>
<tr>
<td>Map 2-4</td>
<td>Geology of Hudette coal property</td>
<td>23</td>
</tr>
<tr>
<td>Map 2-5</td>
<td>Current and historic drilling</td>
<td>24</td>
</tr>
</tbody>
</table>
2 Introduction

2.1 Scope of report

This report is submitted by Walter Canadian Coal Partnership (WCCP) in keeping with the provisions of the Coal Act and the Coal Act Regulation, with respect of exploratory activities on Crown coal tenure within British Columbia.

This report documents the work completed on WCCP’s Hudette property, situated within the Brazion coalfield, in northeastern British Columbia. WCCP acquired the coal licenses of Hudette area in 2001 and 2002. The field investigations by WCCP (previously Western Canadian Coal) began in 2010 and continued during 2011, 2012 and 2013. These efforts have primarily focused in tenure numbers 392474, 392476, 392550 and 392553 (Map-2-1). This report presents the results of geological investigations comprising geological mapping, drilling, borehole geophysical logging, and coal analysis, conducted between May 2010 and December 2013. The exploration programme was conducted by personnel working in WCCP's Vancouver, Canada office, and written by personnel based from WCCP's field office in Tumbler Ridge, Canada.

2.2 Objectives

The Hudette coal property is located in the coal bearing Peace River Region. WCCP had operating coal mines in the north (Willow Creek Mine) and south (Brule Mine) of this property. The geological data from publicly available coal exploration reports (Table 3-1) suggest that coal bearing Gething Formation is widely exposed in the area. The historic drilling data in the area confirm subsurface coal seams of mineable thickness. The coal mined within the Brule and Willow Creek mines also is hosted by the Gething Formation. However, the geology of the area is very complex, and needed to be examined in great detail before the Hudette property could be accurately evaluated. For this reason, WCCP designed a phased and detailed exploration programme in the area on the basis of existing information. The purpose of the exploration programme was to confirm and expand the existing knowledge of coal geology and estimation of coal resources for potential future mining in the area.

The main objectives of the first phase of the programme were:

a. to conduct geological mapping to better understand the stratigraphy and structure of coal measures;
b. to understand the distribution of coal bearing rocks in license area;
c. to confirm the presence and thickness of coal seams within the property; and
d. to recommend a drilling program to validate the presence of possible viable coal seams

The first phase of the project was followed by drilling a number of diamond core and rotary drill holes. The drill hole data was analysed for lithology, seam identification and correlation, geological structure and coal quality. From this information, a preliminary geological model for the entire property was built, which defines the best coal prospects on the license.

2.3 Property description

The Hudette licenses are located in northeastern British Columbia and lie within the Liard mining district. The property is approximately centred on latitude 55° 26’ 59” west and longitude...
Coal Assessment Report for the Hudette coal property, British Columbia

122° 03’ 48” north, at UTM (NAD83 Zone 10) coordinates of 6145253 northing and 559246 easting. The property consists of twenty contiguous coal licenses (391078 through 391083 inclusive, 391530 through 391532 inclusive, 392474 through 392478 inclusive, and 392549 through 392553 inclusive) located in NTS map-area 93O/8 (as depicted within Map 2-1). These licenses cover an area of 5880 hectares.

A separate assessment report concerning the Hudette Trend portion of the property (tenures 391530, 391531, 391532, 392477 and 392478) has been recently submitted by Gwyneth Cathyl-Huhn (2015), presenting the results of two current boreholes drilled along the property’s eastern boundary. A statement of inactivity has been also been recently filed concerning the Hudette Southwest portion of the property (tenures 391077 through 391083 inclusive), where no current work has been done.

Table 2-1 shows relevant information for each individual license, and Map 2-1 shows the location of each license as well as historical drill holes in each license.

Table 2-1: Tenures comprising the Hudette property

<table>
<thead>
<tr>
<th>Tenure Number</th>
<th>Owner No. (%) ownership</th>
<th>Type of Tenure</th>
<th>Map Number</th>
<th>Date Acquired</th>
<th>Area (hectares)</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>391077</td>
<td>140768 (100%)</td>
<td>Coal License</td>
<td>093O050</td>
<td>December 4, 2001</td>
<td>294</td>
<td>Hudette (Brazion)</td>
</tr>
<tr>
<td>391078</td>
<td>140768 (100%)</td>
<td>Coal License</td>
<td>093O050</td>
<td>December 4, 2001</td>
<td>294</td>
<td>Hudette (Brazion)</td>
</tr>
<tr>
<td>391079</td>
<td>140768 (100%)</td>
<td>Coal License</td>
<td>093O050</td>
<td>December 4, 2001</td>
<td>294</td>
<td>Hudette (Brazion)</td>
</tr>
<tr>
<td>391080</td>
<td>140768 (100%)</td>
<td>Coal License</td>
<td>093O050</td>
<td>December 4, 2001</td>
<td>294</td>
<td>Hudette (Brazion)</td>
</tr>
<tr>
<td>391081</td>
<td>140768 (100%)</td>
<td>Coal License</td>
<td>093O050</td>
<td>December 4, 2001</td>
<td>294</td>
<td>Hudette (Brazion)</td>
</tr>
<tr>
<td>391082</td>
<td>140768 (100%)</td>
<td>Coal License</td>
<td>093O040</td>
<td>December 4, 2001</td>
<td>294</td>
<td>Hudette (Brazion)</td>
</tr>
<tr>
<td>391083</td>
<td>140768 (100%)</td>
<td>Coal License</td>
<td>093O040</td>
<td>December 4, 2001</td>
<td>294</td>
<td>Hudette (Brazion)</td>
</tr>
<tr>
<td>391530</td>
<td>140768 (100%)</td>
<td>Coal License</td>
<td>093O050</td>
<td>January 8, 2002</td>
<td>294</td>
<td>Hudette (Brazion)</td>
</tr>
<tr>
<td>391531</td>
<td>140768 (100%)</td>
<td>Coal License</td>
<td>093O050</td>
<td>January 8, 2002</td>
<td>294</td>
<td>Hudette (Brazion)</td>
</tr>
<tr>
<td>391532</td>
<td>140768 (100%)</td>
<td>Coal License</td>
<td>093O040</td>
<td>January 8, 2002</td>
<td>294</td>
<td>Hudette (Brazion)</td>
</tr>
<tr>
<td>392474</td>
<td>140768 (100%)</td>
<td>Coal License</td>
<td>093O050</td>
<td>April 3, 2002</td>
<td>294</td>
<td>Hudette (Brazion)</td>
</tr>
<tr>
<td>392475</td>
<td>140768 (100%)</td>
<td>Coal License</td>
<td>093O050</td>
<td>April 3, 2002</td>
<td>294</td>
<td>Hudette (Brazion)</td>
</tr>
<tr>
<td>392476</td>
<td>140768 (100%)</td>
<td>Coal License</td>
<td>093O050</td>
<td>April 3, 2002</td>
<td>294</td>
<td>Hudette (Brazion)</td>
</tr>
<tr>
<td>392477</td>
<td>140768 (100%)</td>
<td>Coal License</td>
<td>093O050</td>
<td>April 3, 2002</td>
<td>294</td>
<td>Hudette (Brazion)</td>
</tr>
<tr>
<td>392549</td>
<td>140768 (100%)</td>
<td>Coal License</td>
<td>093O050</td>
<td>April 8, 2002</td>
<td>294</td>
<td>Hudette (Brazion)</td>
</tr>
<tr>
<td>392550</td>
<td>140768 (100%)</td>
<td>Coal License</td>
<td>093O050</td>
<td>April 8, 2002</td>
<td>294</td>
<td>Hudette (Brazion)</td>
</tr>
<tr>
<td>392551</td>
<td>140768 (100%)</td>
<td>Coal License</td>
<td>093O050</td>
<td>April 8, 2002</td>
<td>294</td>
<td>Hudette (Brazion)</td>
</tr>
<tr>
<td>392552</td>
<td>140768 (100%)</td>
<td>Coal License</td>
<td>093O050</td>
<td>April 8, 2002</td>
<td>294</td>
<td>Hudette (Brazion)</td>
</tr>
<tr>
<td>392553</td>
<td>140768 (100%)</td>
<td>Coal License</td>
<td>093O050</td>
<td>April 8, 2002</td>
<td>294</td>
<td>Hudette (Brazion)</td>
</tr>
</tbody>
</table>

Note: These tenures are currently held by 0541237 B.C. Ltd. as trustee for and on behalf of WCCP, pursuant to the declaration of trust entered into by 0541237 B.C. Ltd. in favour of WCCP dated November 22, 2012. Map numbers in the table above refer to the British Columbia Geographic System (BCGS).
2.4 Location and Access
The Hudette coal property lies in the Peace River District of northeast British Columbia, Canada. Chetwynd town, located on Highway 97, with a population of 2500 to 3000 (2633 in 2006 census), is the closest population centre in the area. The Hudette property is approximately 55 kilometres southwest of Chetwynd.

The Hudette property is located 135 kilometres south of Fort St John, 100 kilometres west of Dawson Creek, and 310 kilometres east of Prince George. Vancouver is 725 kilometres to the south of the property (Map 2-2). Regular flights connect Vancouver to Fort St. John.

Primary access to the property from Chetwynd is via paved Highway 97, which intersects the Hasler Creek Forestry Road, 24 kilometres west of Chetwynd. The Hasler Creek Forestry Road southward at kilometre 26.5 joins the northward extending Falling Creek Connector Road at kilometre 38.5 (Map 2-3). The junction of Falling Creek Connector Road and Hasler Creek Forestry Road is in the south east corner of the Hudette property (Map 2-1). The Falling Creek Connector Road traverses the property from south to north (Map 2-1 and Map 2-3). The current exploration area approximately extends from kilometre 23 to kilometre 27 on the Falling Creek Connector Road. Alternate access to the property is provided from the Willow Creek Mine. From Chetwynd, the Willow Creek Forestry Road is west, approximately 45 kilometres via paved Highway 97. The Willow Creek Forestry Road joins the Falling Creek Road at kilometre 4 which runs through the property from north to south.

2.5 Climate
The climate of the area is described as cool continental with frigid winters and warm summers. Average annual rainfall and snowfall are 306 millimetres and 169 centimetres respectively. The average frost free period ranges 84 to 91 days and about 30 days with some fog are expected per year. The mean daily temperature in the region is 15.4 C in July and -10.7 C in January, (all data at Chetwynd).

2.6 Geographic setting
The Hudette property lies within the foothills of the Rocky Mountains. The region is characterised by steep mountains commonly trending northwest-southeast. The elevation ranges from 1000 to 1631 metres above sea level. The property is heavily forested. Well-incised creeks are common. Vegetation in the region is predominantly pine, spruce and low level scrub.

2.7 Acknowledgements and professional responsibility
Thanks are due to many past and present workers:

- This report was reviewed by Gwyneth Cathy-Huhn P.Geo. (Senior colliery geologist at Walter Energy). She made many valuable suggestions and many of her suggestions are included in this report. The author is very thankful for her technical support.

- Ian MacLeod P.Geo. (formerly a Walter energy employee) was involved in field activities during year-2011 and year-2012. The data collected by him is included in this report.

- David Lortie P.Geo. (former Chief Geologist at Walter Energy) provided technical and administrative support in the years 2011 and 2012.
Coal Assessment Report for the Hudette coal property, British Columbia

- Blake Snodsmith, at Jim Walter Resources provided administrative support in the year-2013.

Muzaffer Sultan P.Geo. accepts professional responsibility for data and conclusion presented within this report.
3 Exploration

3.1 History of exploration

The Peace River coalfields extend for 400 kilometres along the Rocky Mountain Foothills of northeastern British Columbia. Coal was first discovered in the Peace River District in 1793, by Alexander MacKenzie’s exploring expedition (MacKenzie, 1801). The first coal licenses were granted in 1908, but lack of infrastructure restricted mining to small scale operations serving local needs. The Hasler Creek Coal Company first developed a mine at Hasler Creek in 1943, and mined 4500 tons of coal during 1944 and 1945 for use by the Northern Alberta Railways on their lines within the Peace River region (Spivak, 1944; Stott, 1973). Prior to 1980, less than 100,000 tons were mined (Ryan, 2002).

The expansion of steel production in mid-1960’s stimulated exploration for metallurgical coking coal. In western Canada, exploration focused largely within the Rocky Mountain Foothills of British Columbia and Alberta. By the mid 1970’s, most of the land with coal potential had been acquired by mining and oil and gas consortiums. An agreement between companies within the Japanese steel industry, the Governments of Canada and British Columbia, along with Denison Mines Limited and Teck Corporation was signed in February 1981 to develop the Quintette and Bullmoose Mines in northeastern British Columbia. The Japanese steel-making companies agreed to buy 115 million tonnes of metallurgical and thermal coal from these mines over a period of 15 years. The township of Tumbler Ridge was constructed in the following years, along with rail, highway, electrical power, and port facilities. Coal shipments began from the Quintette and Bullmoose mines in 1983 and 1984, and continued until exhaustion of then-economic reserves in 2000 and 2003, respectively.

Historic (pre-2011) exploratory work in Hudette property includes regional geological mapping, 25 widely spaced boreholes and limited coal-quality data. Locations of historical boreholes are shown in Map 2-1 and Table 3-2, and coal intersections in these holes are presented in Table 3-3. The Hudette property in previous Assessment Reports is generally discussed with the Pine Pass and Falling Creek properties. Table 3-1 lists historic exploration reports consulted for the present report.
Table 3-1: Cross-reference to historic coal assessment reports

<table>
<thead>
<tr>
<th>Company</th>
<th>Author</th>
<th>Coal Assessment Report number</th>
<th>Year</th>
<th>Property</th>
<th>Map-areas (within the National Topographic System)</th>
<th>Latitude</th>
<th>Longitude</th>
<th>UTM (NAD83, Zone 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koporok Mines</td>
<td>Pringle, 1968</td>
<td>582</td>
<td>1968</td>
<td>Pine Pass</td>
<td>93P/9, 93P/8, 93P/5</td>
<td>55.497</td>
<td>122.33</td>
<td>542327 6150303</td>
</tr>
<tr>
<td>Pan Ocean Oil</td>
<td>Dyson, 1973</td>
<td>583</td>
<td>1973</td>
<td>Pine Pass</td>
<td>93P/5, 93O/8, 93O/9</td>
<td>55.3</td>
<td>122.1</td>
<td>557141 6128545</td>
</tr>
<tr>
<td>McIntyre Mines</td>
<td>Dyson, 1975-1</td>
<td>526</td>
<td>1975</td>
<td>Fall Mountain</td>
<td>93P/5, 93O/8, 93O/9</td>
<td>55.579</td>
<td>122.22</td>
<td>549489 6159505</td>
</tr>
<tr>
<td>Pan Ocean Oil</td>
<td>Dyson, 1975-2</td>
<td>584</td>
<td>1975</td>
<td>Pine Pass</td>
<td>93P/5, 93O/8, 93O/9</td>
<td>55.3</td>
<td>122.1</td>
<td>557141 6128545</td>
</tr>
<tr>
<td>Pan Ocean Oil</td>
<td>Dyson, 1977</td>
<td>585</td>
<td>1977</td>
<td>Pine Pass</td>
<td>93P/5, 93O/8, 93O/9</td>
<td>55.3</td>
<td>122.1</td>
<td>557141 6128545</td>
</tr>
<tr>
<td>Shell Canada</td>
<td>Panchy, 1979</td>
<td>586</td>
<td>1979</td>
<td>Pine Pass</td>
<td>93O/9</td>
<td>55.6</td>
<td>122.24</td>
<td>547782 6161823</td>
</tr>
<tr>
<td>Norcen Energy</td>
<td>Newson, 1980</td>
<td>587</td>
<td>1980</td>
<td>Pine Pass</td>
<td>93P/7, 93O/9</td>
<td>55.535</td>
<td>122.06</td>
<td>559390 6154730</td>
</tr>
<tr>
<td>Norcen Energy</td>
<td>Newson, 1980</td>
<td>588</td>
<td>1980</td>
<td>Pine Pass</td>
<td>93P/7, 93O/9</td>
<td>55.535</td>
<td>122.06</td>
<td>559390 6154730</td>
</tr>
<tr>
<td>Esso Resources</td>
<td>Water, 1981</td>
<td>522</td>
<td>1980</td>
<td>Falling Creek</td>
<td>93O/8, 93O/9, 93P/4</td>
<td>55.416</td>
<td>122</td>
<td>563303 6141614</td>
</tr>
<tr>
<td>Esso Resources</td>
<td>Klatzel-Mudry et al., 1982</td>
<td>523</td>
<td>1981</td>
<td>Falling Creek</td>
<td>93O/8, 93O/09, 93P/5</td>
<td>55.423</td>
<td>122.04</td>
<td>560571 6142281</td>
</tr>
<tr>
<td>Esso Resources</td>
<td>Klatzel-Mudry et al., 1982</td>
<td>524</td>
<td>1982</td>
<td>Falling Creek</td>
<td>93O/8, 93O/9, 93P/4</td>
<td>55.422</td>
<td>122.05</td>
<td>563294 6142208</td>
</tr>
<tr>
<td>Esso Resources</td>
<td>Klatzel-Mudry et al., 1984</td>
<td>525</td>
<td>1983</td>
<td>Falling Creek</td>
<td>93O/8, 93O/9, 93P/5</td>
<td>55.472</td>
<td>122.04</td>
<td>560623 6147735</td>
</tr>
<tr>
<td>Kennecott</td>
<td>Hovis et al, 2006</td>
<td>888</td>
<td>2006</td>
<td>Falling Creek</td>
<td>93O/8, 93O/9</td>
<td>55.506</td>
<td>122.139</td>
<td>554300 6151550</td>
</tr>
</tbody>
</table>
3.1.1 Regional exploratory context

The earliest coal exploration in the Hudette area was conducted from 1946 to 1951 by the Coal Division of the then-extant British Columbia, Department of Lands and Forests to estimate mineable coal reserves near the proposed railway route through the Peace River District. The exploration programme consisted of geological mapping, trenching and 14,830 metres (48,653 feet) of diamond drilling. The work was mainly conducted in the Noman Creek, Willow Creek, and Hasler Mine areas. A summary report, presenting results of this work, was published as a provincial government bulletin (McKechnie, 1955).

No exploration or mine-development activities in the area are known to have been conducted between the years 1951 and 1963, other than geological mapping by workers within the petroleum industry.

During the 1960s, with sponsorship by the British Columbia Department of Mines, J.E. Hughes conducted reconnaissance geological mapping of the Pine Pass area, followed by regional geological mapping on 1:63,360 scale. Results were initially published as a dissertation for McGill University (Hughes, 1963), and subsequently as Department of Mines bulletins (Hughes, 1964, 1967).

In 1968 and 1969, Brameda Resources restarted exploration work in the Norman Creek Area (half-way between Pine Pass and the town of Chetwynd), drilling 23 cored drill holes totalling 4,786 metres. Trenching was also conducted, and field mapping was done at a scale of 1:4800 (as reported by Panchy, 1979).

Pan Ocean Oil Limited (Pan Ocean) began exploration activity in the autumn of 1972, and completed field mapping and drilling of five boreholes (designated as H1 through H5) in early 1973. The area on the divide between Willow Creek and Johnson Creek (situated to the northeast of the Hudette property) was chosen for drilling because of generally low dips, demonstrated presence of thicker coal seams, and relatively easy access for drilling.

Pan Ocean drilled ten more widely-spaced boreholes in 1974-1975 (Dyson, 1975) to test the coal-bearing sequence across their holdings. Two of these holes (DH-7401 and DH-7505, with results shown in Table 3-3) are located in the southern part of the Hudette property. Two other boreholes (75-03 and 75-07) were drilled in the adjacent Mink Creek property. Pan Ocean's drilling indicated that the best potential for economic deposits lay within the upper portion of the Gething coal-measures.

During 1976-1977, Pan Ocean drilled three more boreholes (situated to the northeast of, and well outside, the Hudette property) in an attempt to define the site for an exploratory adit. These holes intersected coal seams, but the adit programme was unsuccessful due to thick overburden and to unexpected faulting (Dyson, 1977).

In 1979, Norcen Energy, acting under a joint venture agreement with Pan Ocean, carried out field mapping at 1:10,000 scale and the drilling of seven additional boreholes (also outside the Hudette property), with a cumulative coring length of 1700 metres (Newson, 1979). The mapping was not very helpful due to lack of exposures.

In May of 1980, the Norcen / Pan Ocean licenses were relinquished and subsequently acquired by Esso Resources (Klatzel-Mudry et al., 1981). Esso Resources drilled one hole in 1980 and three more holes in 1983. All of these holes are within the Hudette property (Map 2-1).
Esso continued mapping and drilling in 1982 (Klatzel-Mudry et al., 1982), drilling fourteen more holes within the Hudette property (Map 2-1). All of these holes were drilled by the air-rotary method, except for one borehole, 11P1. Chip samples were taken every three metres and described in detail for all of these holes (Klatzel-Mudry et al., 1982). A suite of geophysical logs consisting of natural gamma, bulk density, neutron, caliper, deviation and dipmeter was also run on every hole. Coal seams were intersected in the upper half of the Gething Formation. Major coals were named, from top down, Brenda Seam (6.5 metres thick, and well-correlated by this work), Twin Seam (3.3 metres), Dave Seam (2.6 metres), Rat Seam (2 metres), High Gamma Seam (<1 metre), and Contact Seam (1.5 to 2 metres).

In 1983, Esso drilled eight additional holes in and around the Hudette property. These holes were continuously-cored by means of a diamond-drill, and geophysically logged. They ranged in depth from 77 to 384 metres. The 1983 drilling was intended to intersect the Moosebar - Gething formational contact, with the expectation of using it as a datum for coal seam correlations. Four holes (83-14, 83-18, 83-19, and 83-20) lie within the Hudette property. Esso's work halted in 1984 as the coal market declined.

Exploration activity resumed in 2004, when Kennecott Exploration Company carried out geological mapping and drilling. Geological mapping was limited to outcrops in the road cuts of logging roads. Fourteen year-2004 and 2005 holes, including diamond-drill and rotary-drill holes, were drilled (Hovis et al., 2006). One borehole (DD04PR002) is located in the northeastern corner of the Hudette property, whereas borehole 05RCPR05 lies just west of the property.

The Coal Section of the British Columbia Geological Survey, part of the Ministry of Energy, Mines and Petroleum Resources performed mapping of the Hudette area and surroundings on 1:50,000 from 1991 to 1993. A geological compilation map of the Peace River coalfields, at a scale of 1:200,000, was published by Legun (2003).

The Mink North coal property, belonging to Walter Canadian Coal Partnership (Cathyl-Huhn, 2015b), and the Willow Creek coal lease, belonging to the Willow Creek Coal Partnership (Cathyl-Huhn, 2015c), are located to the north of Hudette property. Geological data from this area can be helpful for regional correlation of coal seams in the Hudette, Mink North and Willow areas.

3.1.2 Historical drill hole data

The data presented in Tables 3-2 and 3-3 were compiled from historic coal-assessment reports and WCCP’s database. Historic geophysical logs of a few holes were re-examined, and interpretations were refined wherever possible. The Universal Transverse Mercator (UTM) grid-reference coordinates were also changed from NAD27 to NAD83.
Table 3-2: Location of historical drill holes in the Hudette area

<table>
<thead>
<tr>
<th>Coal Report No.</th>
<th>Borehole</th>
<th>Company Name</th>
<th>NAD83 Easting</th>
<th>NAD83 Northing</th>
<th>Elevation</th>
<th>Total Depth</th>
<th>Starting Formation</th>
<th>Orientation</th>
<th>Drilling Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH-7401</td>
<td></td>
<td>Pan Ocean Oil</td>
<td>560818</td>
<td>6142704</td>
<td>1127</td>
<td>227</td>
<td>No data</td>
<td>Vertical</td>
<td>Diamond</td>
</tr>
<tr>
<td>584</td>
<td>DH-7505</td>
<td>Pan Ocean Oil</td>
<td>561515</td>
<td>6139950</td>
<td>1280</td>
<td>349</td>
<td>Getting</td>
<td>55°</td>
<td>Diamond</td>
</tr>
<tr>
<td>584</td>
<td>DH-7508</td>
<td>Pan Ocean Oil</td>
<td>558326</td>
<td>6151698</td>
<td>1097</td>
<td>362</td>
<td>Getting</td>
<td>60°</td>
<td>Diamond</td>
</tr>
<tr>
<td>522</td>
<td>80-1</td>
<td>Esso Minerals</td>
<td>559543</td>
<td>6144476</td>
<td>1100</td>
<td>269</td>
<td>Getting</td>
<td>Vertical</td>
<td>Diamond</td>
</tr>
<tr>
<td>523</td>
<td>81-1</td>
<td>Esso Minerals</td>
<td>559314</td>
<td>6144215</td>
<td>1220</td>
<td>283</td>
<td>Getting</td>
<td>Vertical</td>
<td>Diamond</td>
</tr>
<tr>
<td>523</td>
<td>81-2</td>
<td>Esso Minerals</td>
<td>560509</td>
<td>6142327</td>
<td>1185</td>
<td>340</td>
<td>Getting</td>
<td>Vertical</td>
<td>Diamond</td>
</tr>
<tr>
<td>523</td>
<td>81-3</td>
<td>Esso Minerals</td>
<td>561949</td>
<td>6140718</td>
<td>1183</td>
<td>292</td>
<td>Getting?</td>
<td>Vertical</td>
<td>Diamond</td>
</tr>
<tr>
<td>524</td>
<td>82-1</td>
<td>Esso Minerals</td>
<td>560314</td>
<td>6141855</td>
<td>1272</td>
<td>1988</td>
<td>Getting</td>
<td>Vertical</td>
<td>Rotary</td>
</tr>
<tr>
<td>524</td>
<td>82-2</td>
<td>Esso Minerals</td>
<td>560878</td>
<td>6141940</td>
<td>1165</td>
<td>198</td>
<td>Getting</td>
<td>Vertical</td>
<td>Rotary</td>
</tr>
<tr>
<td>524</td>
<td>82-3</td>
<td>Esso Minerals</td>
<td>563044</td>
<td>6139985</td>
<td>1140</td>
<td>180</td>
<td>Getting</td>
<td>Vertical</td>
<td>Rotary</td>
</tr>
<tr>
<td>524</td>
<td>82-4</td>
<td>Esso Minerals</td>
<td>561769</td>
<td>6140335</td>
<td>1237</td>
<td>201</td>
<td>Getting</td>
<td>Vertical</td>
<td>Rotary</td>
</tr>
<tr>
<td>524</td>
<td>82-5</td>
<td>Esso Minerals</td>
<td>560144</td>
<td>6141295</td>
<td>1338</td>
<td>198</td>
<td>Getting</td>
<td>Vertical</td>
<td>Rotary</td>
</tr>
<tr>
<td>524</td>
<td>82-6</td>
<td>Esso Minerals</td>
<td>558967</td>
<td>6143467</td>
<td>1255</td>
<td>201</td>
<td>Getting</td>
<td>Vertical</td>
<td>Rotary</td>
</tr>
<tr>
<td>524</td>
<td>82-7</td>
<td>Esso Minerals</td>
<td>558341</td>
<td>6143685</td>
<td>1230</td>
<td>200</td>
<td>Getting</td>
<td>Vertical</td>
<td>Rotary</td>
</tr>
<tr>
<td>524</td>
<td>82-8</td>
<td>Esso Minerals</td>
<td>558499</td>
<td>6145105</td>
<td>1269</td>
<td>200</td>
<td>Getting</td>
<td>Vertical</td>
<td>Rotary</td>
</tr>
<tr>
<td>524</td>
<td>82-9</td>
<td>Esso Minerals</td>
<td>558779</td>
<td>6145310</td>
<td>1258</td>
<td>200</td>
<td>Getting</td>
<td>Vertical</td>
<td>Rotary</td>
</tr>
<tr>
<td>524</td>
<td>82-10</td>
<td>Esso Minerals</td>
<td>557984</td>
<td>6144460</td>
<td>1352</td>
<td>171</td>
<td>Getting</td>
<td>Vertical</td>
<td>Rotary</td>
</tr>
<tr>
<td>524</td>
<td>82-11P1</td>
<td>Esso Minerals</td>
<td>560639</td>
<td>6142310</td>
<td>1177</td>
<td>27</td>
<td>Getting</td>
<td>Vertical</td>
<td>Rotary</td>
</tr>
<tr>
<td>524</td>
<td>82-11P2</td>
<td>Esso Minerals</td>
<td>560562</td>
<td>6142351</td>
<td>1187</td>
<td>50</td>
<td>Getting</td>
<td>Vertical</td>
<td>Rotary</td>
</tr>
<tr>
<td>524</td>
<td>82-11CH</td>
<td>Esso Minerals</td>
<td>560599</td>
<td>6142355</td>
<td>1187</td>
<td>11</td>
<td>Getting</td>
<td>Vertical</td>
<td>Diamond</td>
</tr>
<tr>
<td>524</td>
<td>82-12</td>
<td>Esso Minerals</td>
<td>563632</td>
<td>6139606</td>
<td>1105</td>
<td>200</td>
<td>Getting</td>
<td>Vertical</td>
<td>Rotary</td>
</tr>
<tr>
<td>524</td>
<td>82-13</td>
<td>Esso Minerals</td>
<td>562372</td>
<td>6140926</td>
<td>1152</td>
<td>171</td>
<td>Getting</td>
<td>Vertical</td>
<td>Rotary</td>
</tr>
<tr>
<td>525</td>
<td>83-14</td>
<td>Esso Minerals</td>
<td>558879</td>
<td>6149455</td>
<td>1335</td>
<td>336.11</td>
<td>Getting</td>
<td>Vertical</td>
<td>Diamond</td>
</tr>
<tr>
<td>525</td>
<td>83-15</td>
<td>Esso Minerals</td>
<td>553382</td>
<td>6150225</td>
<td>1185</td>
<td>205.96</td>
<td>Moosebar</td>
<td>Vertical</td>
<td>Diamond</td>
</tr>
<tr>
<td>525</td>
<td>83-16</td>
<td>Esso Minerals</td>
<td>551619</td>
<td>6148480</td>
<td>1282</td>
<td>201.77</td>
<td>Moosebar</td>
<td>Vertical</td>
<td>Diamond</td>
</tr>
<tr>
<td>525</td>
<td>83-19</td>
<td>Esso Minerals</td>
<td>557079</td>
<td>6149315</td>
<td>1292</td>
<td>251.66</td>
<td>Getting</td>
<td>Vertical</td>
<td>Diamond</td>
</tr>
<tr>
<td>525</td>
<td>83-20</td>
<td>Esso Minerals</td>
<td>556004</td>
<td>6144165</td>
<td>1575</td>
<td>232.97</td>
<td>Getting</td>
<td>Vertical</td>
<td>Diamond</td>
</tr>
<tr>
<td>888</td>
<td>DD04PR002</td>
<td>Kennecott</td>
<td>555108</td>
<td>6149960</td>
<td>1067</td>
<td>290.93</td>
<td>Moosebar</td>
<td>Vertical</td>
<td>Diamond</td>
</tr>
<tr>
<td>888</td>
<td>05RCPR002</td>
<td>Kennecott</td>
<td>554624</td>
<td>6149476</td>
<td>1100</td>
<td>204.22</td>
<td>Moosebar</td>
<td>Vertical</td>
<td>Reverse Circulation</td>
</tr>
</tbody>
</table>
Table 3-3: Coal seam intervals of historic boreholes

<table>
<thead>
<tr>
<th>Hole DH-7401</th>
<th>No significant coal thickness, faulted section, no data for collar.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hole DH-7505</td>
<td></td>
</tr>
<tr>
<td></td>
<td>From</td>
</tr>
<tr>
<td>28.65</td>
<td>29.26</td>
</tr>
<tr>
<td>37.49</td>
<td>38.4</td>
</tr>
<tr>
<td>57.3</td>
<td>59.74</td>
</tr>
<tr>
<td>109.88</td>
<td>110.16</td>
</tr>
<tr>
<td>113.19</td>
<td>113.5</td>
</tr>
<tr>
<td>171.45</td>
<td>173.12</td>
</tr>
<tr>
<td>222.07</td>
<td>227.16</td>
</tr>
<tr>
<td>247.1</td>
<td>247.8</td>
</tr>
<tr>
<td>299.61</td>
<td>300.53</td>
</tr>
</tbody>
</table>

Hole DH-7508			
	From	To	Thickness
45.42	46.63		1.22
71.32	72.85		1.52
73.76	74.25		0.49
80.56	84.00		3.44
103.63	105.46		1.83
131.06	133.20		2.13
160.93	163.37		2.44
181.66	182.88		1.22
201.17	202.39		1.22
203.00	205.44		2.44
275.23	275.69		0.46
283.46	283.83		0.37
287.43	287.64		0.21
302.97	303.58		0.61
312.72	313.64		0.91
320.59	321.26		0.67
328.57	330.40		1.83
342.66	343.81		1.16
355.70	360.27		4.57

Hole 80-1			
	From	To	Thickness
97	97.6		0.60
98.6	99.1		0.50
118.4	118.8		0.40
219.6	220.8		1.20

Hole 81-1			
	From	To	Thickness
27.8	28.6		0.8
31.2	31.8		0.6
40.8	41.8		1
172.4	174.3		1.9

Hole 81-2			
	From	To	Thickness
6.02	7.85		1.83
8.95	10.3		1.35
38	39.9		1.9
49.25	50.14		0.89
92.1	92.85		0.75
96.8	97.41		0.61
98.21	98.63		0.42
109.8	110.69		0.89
112.82	114.74		1.92
115.5	117.52		2.02
127.9	128.7		0.8
139.84	140.76		0.92
144.72	145.37		0.65
214	214.6		0.6
219.14	223.32		4.18
247.9	248.3		0.4
253.49	254.06		0.57
256.44	256.88		0.44
257.16	257.63		0.47
258.87	259.24		0.37
Table 3-3: Coal seam intervals of historic boreholes (continued)

<table>
<thead>
<tr>
<th>Hole 81-3</th>
<th>From</th>
<th>To</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>53.86</td>
<td>55.06</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>62.1</td>
<td>62.9</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>69.3</td>
<td>70</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>75.43</td>
<td>76.1</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>77.16</td>
<td>77.92</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>86.1</td>
<td>87.74</td>
<td>1.64</td>
<td></td>
</tr>
<tr>
<td>105.11</td>
<td>105.83</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>106.04</td>
<td>106.38</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>143.66</td>
<td>145.04</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>152.7</td>
<td>153.3</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>154.1</td>
<td>154.8</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>161.45</td>
<td>163.5</td>
<td>2.05</td>
<td></td>
</tr>
<tr>
<td>163.86</td>
<td>166.03</td>
<td>2.17</td>
<td></td>
</tr>
<tr>
<td>234.8</td>
<td>235.33</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>239.73</td>
<td>240.43</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>247.29</td>
<td>247.54</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>257.69</td>
<td>258.11</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>269.09</td>
<td>269.73</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>271.29</td>
<td>271.94</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>274.04</td>
<td>274.71</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>276.84</td>
<td>277.36</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>283.54</td>
<td>283.89</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>284.4</td>
<td>284.7</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 82-1</th>
<th>From</th>
<th>To</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.3</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>4.8</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>14.6</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>28.8</td>
<td>31.6</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>52.4</td>
<td>53.6</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>58.2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>131.8</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 82-2</th>
<th>From</th>
<th>To</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>29.2</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>32.8</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>34.3</td>
<td>36.8</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>51.6</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>107.6</td>
<td>108.8</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>118.20</td>
<td>119.20</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>120.6</td>
<td>0.60</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 82-3</th>
<th>From</th>
<th>To</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>4</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>9.4</td>
<td>11.82</td>
<td>2.42</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 82-4</th>
<th>From</th>
<th>To</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>10.8</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>14.5</td>
<td>15.1</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>16.5</td>
<td>17.3</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>30.4</td>
<td>32.1</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>32.9</td>
<td>34.5</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>72.4</td>
<td>73</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>145.3</td>
<td>146.1</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 82-5</th>
<th>From</th>
<th>To</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.15</td>
<td>43.1</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>70.2</td>
<td>71.6</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>73.75</td>
<td>74.3</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>136.6</td>
<td>137.5</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>147.2</td>
<td>148.8</td>
<td>1.6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 82-6</th>
<th>From</th>
<th>To</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>9.1</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>13.4</td>
<td>14.5</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>21.4</td>
<td>21.95</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>25.5</td>
<td>26.4</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>36.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>44.2</td>
<td>46.1</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>121.5</td>
<td>122.2</td>
<td>0.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 82-7</th>
<th>From</th>
<th>To</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.4</td>
<td>23.9</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>27.6</td>
<td>28.6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>60.8</td>
<td>61.4</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>72.4</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>74.3</td>
<td>74.65</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>122.4</td>
<td>123.1</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>182.4</td>
<td>182.8</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>184.8</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>
Table 3-3: Coal seam intervals of historic boreholes (continued)

<table>
<thead>
<tr>
<th>Hole 82-8</th>
<th></th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>1.00</td>
</tr>
<tr>
<td>20.01</td>
<td>22.5</td>
<td>2.49</td>
</tr>
<tr>
<td>26.6</td>
<td>29.3</td>
<td>2.70</td>
</tr>
<tr>
<td>32.9</td>
<td>34.9</td>
<td>2.00</td>
</tr>
<tr>
<td>39</td>
<td>40</td>
<td>1.00</td>
</tr>
<tr>
<td>56.1</td>
<td>58.4</td>
<td>2.30</td>
</tr>
<tr>
<td>102.7</td>
<td>103.6</td>
<td>0.90</td>
</tr>
<tr>
<td>111.8</td>
<td>112.4</td>
<td>0.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 82-9</th>
<th></th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td></td>
</tr>
<tr>
<td>65.7</td>
<td>67</td>
<td>1.30</td>
</tr>
<tr>
<td>75.4</td>
<td>77.4</td>
<td>2.00</td>
</tr>
<tr>
<td>97</td>
<td>98</td>
<td>1.00</td>
</tr>
<tr>
<td>127.2</td>
<td>128.6</td>
<td>1.40</td>
</tr>
<tr>
<td>144</td>
<td>144.6</td>
<td>0.60</td>
</tr>
<tr>
<td>164</td>
<td>166.2</td>
<td>2.20</td>
</tr>
<tr>
<td>166.6</td>
<td>170.4</td>
<td>3.80</td>
</tr>
<tr>
<td>187.3</td>
<td>187.9</td>
<td>0.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 82-10</th>
<th></th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>6.5</td>
<td>1.10</td>
</tr>
<tr>
<td>20.2</td>
<td>21</td>
<td>0.80</td>
</tr>
<tr>
<td>25.2</td>
<td>25.6</td>
<td>0.40</td>
</tr>
<tr>
<td>29.6</td>
<td>30</td>
<td>0.40</td>
</tr>
<tr>
<td>34.9</td>
<td>36.2</td>
<td>1.30</td>
</tr>
<tr>
<td>45.3</td>
<td>46.2</td>
<td>0.90</td>
</tr>
<tr>
<td>48</td>
<td>48.5</td>
<td>0.50</td>
</tr>
<tr>
<td>50.2</td>
<td>50.6</td>
<td>0.40</td>
</tr>
<tr>
<td>62.6</td>
<td>63.8</td>
<td>1.20</td>
</tr>
<tr>
<td>90.6</td>
<td>97</td>
<td>6.40</td>
</tr>
<tr>
<td>140.9</td>
<td>143.4</td>
<td>2.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 82-11-P1</th>
<th></th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>3.36</td>
<td>1.96</td>
</tr>
<tr>
<td>4</td>
<td>8.5</td>
<td>4.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 82-11-CH</th>
<th></th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>10.48</td>
<td>7.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 82-12</th>
<th></th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td></td>
</tr>
<tr>
<td>12.9</td>
<td>13.7</td>
<td>0.8</td>
</tr>
<tr>
<td>14.2</td>
<td>15</td>
<td>0.8</td>
</tr>
<tr>
<td>15.4</td>
<td>15.7</td>
<td>0.3</td>
</tr>
<tr>
<td>16.9</td>
<td>18</td>
<td>1.1</td>
</tr>
<tr>
<td>23.9</td>
<td>24.2</td>
<td>0.3</td>
</tr>
<tr>
<td>51.2</td>
<td>52.8</td>
<td>1.6</td>
</tr>
<tr>
<td>53.6</td>
<td>54</td>
<td>0.4</td>
</tr>
<tr>
<td>94.8</td>
<td>95.4</td>
<td>0.6</td>
</tr>
<tr>
<td>96</td>
<td>96.8</td>
<td>0.8</td>
</tr>
<tr>
<td>131.2</td>
<td>132</td>
<td>0.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 82-13</th>
<th></th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td></td>
</tr>
<tr>
<td>31.92</td>
<td>33.04</td>
<td>1.12</td>
</tr>
<tr>
<td>77.2</td>
<td>78.5</td>
<td>1.3</td>
</tr>
<tr>
<td>87.86</td>
<td>88.96</td>
<td>1.1</td>
</tr>
<tr>
<td>119.4</td>
<td>120.5</td>
<td>1.1</td>
</tr>
<tr>
<td>125</td>
<td>125.5</td>
<td>0.5</td>
</tr>
<tr>
<td>137.2</td>
<td>137.6</td>
<td>0.4</td>
</tr>
<tr>
<td>153.54</td>
<td>154.36</td>
<td>0.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 83-15</th>
<th></th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td></td>
</tr>
<tr>
<td>No Coal, Only Moosebar Formation.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 83-18</th>
<th></th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td></td>
</tr>
<tr>
<td>41.6</td>
<td>43.21</td>
<td>1.61</td>
</tr>
<tr>
<td>70</td>
<td>73.24</td>
<td>3.24</td>
</tr>
<tr>
<td>74.87</td>
<td>75.33</td>
<td>0.46</td>
</tr>
<tr>
<td>96.72</td>
<td>104.57</td>
<td>7.85</td>
</tr>
<tr>
<td>143.05</td>
<td>143.27</td>
<td>0.22</td>
</tr>
<tr>
<td>155.66</td>
<td>156.06</td>
<td>0.4</td>
</tr>
<tr>
<td>158.88</td>
<td>161.52</td>
<td>2.64</td>
</tr>
</tbody>
</table>
Table 3-3: Coal seam intervals of historic boreholes (concluded)

<table>
<thead>
<tr>
<th>Hole 83-14</th>
<th>Hole 83-19</th>
<th>Hole 83-20</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Thickness</th>
<th>To</th>
<th>Thickness</th>
<th>From</th>
<th>To</th>
<th>Thickness</th>
<th>From</th>
<th>To</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.33</td>
<td>9.66</td>
<td>0.33</td>
<td>30.08</td>
<td>32</td>
<td>1.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.8</td>
<td>12.05</td>
<td>0.25</td>
<td>38</td>
<td>39.56</td>
<td>1.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.4</td>
<td>25.2</td>
<td>0.8</td>
<td>44.56</td>
<td>48</td>
<td>3.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.3</td>
<td>33.9</td>
<td>0.6</td>
<td>64.54</td>
<td>65.8</td>
<td>1.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.2</td>
<td>36.1</td>
<td>0.9</td>
<td>70.04</td>
<td>72.34</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.6</td>
<td>42</td>
<td>0.4</td>
<td>74.06</td>
<td>76.44</td>
<td>2.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.04</td>
<td>44.25</td>
<td>0.21</td>
<td>102.24</td>
<td>104.65</td>
<td>2.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.16</td>
<td>63.85</td>
<td>0.69</td>
<td>107.52</td>
<td>110.5</td>
<td>2.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.39</td>
<td>67.86</td>
<td>2.47</td>
<td>112.66</td>
<td>115.85</td>
<td>3.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.16</td>
<td>69.41</td>
<td>1.25</td>
<td>117.11</td>
<td>117.59</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.4</td>
<td>75.65</td>
<td>0.25</td>
<td>117.89</td>
<td>118.5</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.95</td>
<td>89.45</td>
<td>0.5</td>
<td>117.11</td>
<td>117.3</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119.6</td>
<td>119.9</td>
<td>0.3</td>
<td>143.3</td>
<td>143.9</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139.39</td>
<td>140.33</td>
<td>0.94</td>
<td>154.55</td>
<td>158.65</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140.61</td>
<td>143.36</td>
<td>2.75</td>
<td>170.65</td>
<td>171.3</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165.8</td>
<td>166.2</td>
<td>0.4</td>
<td>209.64</td>
<td>212.52</td>
<td>2.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171.08</td>
<td>171.5</td>
<td>0.42</td>
<td>221.8</td>
<td>228.88</td>
<td>7.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>179.1</td>
<td>179.6</td>
<td>0.5</td>
<td>230.06</td>
<td>232.14</td>
<td>2.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185.3</td>
<td>185.8</td>
<td>0.5</td>
<td>239.96</td>
<td>240.5</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>263.4</td>
<td>264.06</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>276.92</td>
<td>277.3</td>
<td>0.38</td>
<td>35.91</td>
<td>36.78</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>302.11</td>
<td>302.8</td>
<td>0.69</td>
<td>79.18</td>
<td>80.25</td>
<td>1.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>312.5</td>
<td>312.9</td>
<td>0.4</td>
<td>81.4</td>
<td>81.7</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82.4</td>
<td>82.6</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>111.97</td>
<td>112.83</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>115.6</td>
<td>116</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>116.2</td>
<td>116.4</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>119.2</td>
<td>120</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>196.2</td>
<td>196.6</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>199.9</td>
<td>200.2</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200.7</td>
<td>200.9</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>213.35</td>
<td>214.61</td>
<td>1.26</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2 Current exploration

WCCP began exploration of the Hudette property in May 2010 and continued until December 2013. The programme was completed in two phases. The first phase, completed in 2010, included review of all available information from the property, and reconnaissance geological mapping. Fieldwork was followed by drilling between 2011 and 2013. Apart from surveying, data analysis, and geological interpretation including core logging and geophysical log interpretation, all other tasks relevant to property exploration were conducted by professional contracting firms. A year-2012 preliminary resource-evaluation study was also conducted by a consulting firm, Cardno. The contracting parties whose services were used for the period from 2011 to 2013 are listed below in Table 3-4.

<table>
<thead>
<tr>
<th>Table 3-4: Coal exploration contractors in years-2011 through 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities and contractors</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Downhole geophysical logging:</td>
</tr>
<tr>
<td>Century Wireline Services</td>
</tr>
<tr>
<td>Access (trail-building) and drilling support</td>
</tr>
<tr>
<td>Don Ho</td>
</tr>
<tr>
<td>Can-West Exploration Ltd.</td>
</tr>
<tr>
<td>Rotary drilling:</td>
</tr>
<tr>
<td>Camco</td>
</tr>
<tr>
<td>RC Drilling</td>
</tr>
<tr>
<td>G. Lindsay Drilling</td>
</tr>
<tr>
<td>Diamond drilling:</td>
</tr>
<tr>
<td>Boart Longyear</td>
</tr>
<tr>
<td>Analytical services:</td>
</tr>
<tr>
<td>Loring Laboratories</td>
</tr>
<tr>
<td>Walter Energy Western Coal (in-house) Laboratory</td>
</tr>
<tr>
<td>Pearson & Associates Ltd. (coal petrography)</td>
</tr>
<tr>
<td>ALS</td>
</tr>
<tr>
<td>Geological consulting:</td>
</tr>
<tr>
<td>Cardno</td>
</tr>
</tbody>
</table>

3.2.1 Year-2010 geological mapping

Geological mapping was mostly carried out during the summer of 2010. Small-scale mapping continued from 2011 to 2013, but was restricted to minor outcrops exposed along newly built trails to access drill sites. The purpose of mapping was to confirm and expand the existing knowledge of geology, particularly structure and distribution of the coal bearing rocks in the area. Data collected include location of coal seams at outcrop, their thickness, probable correlation of coals, and recording of structural data (measurement of bedding attitude) at
isolated outcrops. The new data collected allowed a refinement of existing geologic map and reinterpretation of the historic data.

As a consequence of extensive forest cover, and the widespread presence of glacial overburden ranging from a few metres to tens of metres in thickness, natural rock outcrops are very scarce within the Hudette coal property. WCCP's year-2010 geological mapping primarily focused upon new road-cuts along the Falling Creek Connector Road, which was under construction at the time. Occasional outcrops were also observed along stream channels or newly-built trails. Although many more coal outcrops and coal occurrences were found, than had previously been reported, no complete section of the Gething Formation was exposed. The lack of outcrop continuity did not allow seam tracing or correlation for a considerable distance. New geological structures were recognised, but their extents were not generally traceable. All available data have been plotted onto a base map, originally at 1:20,000 scale, and here incorporated within Map 2-4.

3.2.2 Current drilling

WCCP drilled within the Hudette coal property in years-2011, 2012 and 2013. The purpose of the drilling was to test the Gething Formation for viable coal seams, improve the understanding of structural features within the property, test seam continuity, and obtain unweathered samples for coal-quality analysis.

Fifty-six current (year-2011 or more recent) boreholes, with an overall depth of 11,514 metres, were drilled at Hudette (see Map 2-5 for location, and Table 3-5 for coordinates). Out of these holes, 47 were performed using air rotary drilling method, 7 were drilled with air rotary with spot coring of coal seams, and 3 were continuously cored using diamond rotary coring techniques. Multiple boreholes were drilled within a few metres' distance, at eight sites (twin holes at five sites, and triple holes at three sites) to interpret the structure, or to collect samples for quality study. Spot-coring holes were located within few metres of air-rotary holes and only coal bearing zones encountered in rotary holes were cored in these holes. Two of these holes (HUD13-5 and HUD13-07C) did not recover any coal. The three continuously cored holes were drilled close to air rotary holes which had good coal intersections. The reason for diamond drilling was to obtain good coal recovery for quality studies.

Borehole HUD 13-03C is located outside the bounds of the Hudette coal property, situated within one of the coal licences comprising the New Creek coal property (Tenure #418537), near Hudette's tenure 392476.

All of the current boreholes were accessed from the Falling Creek Connector Road via newly-built trails. Table 3-5, given below, presents locations, orientations, total depths and Drift thickness for all current boreholes. Positions of most of the boreholes were confirmed by means of surveying, with the exception of five boreholes, which were inaccessible during the times that a surveying crew was available:

- **HUD11-01C** Coordinates obtained by means of hand-held Global Positioning System (GPS); borehole was situated within a few metres of HUD11-1;
- **HUD11-07C** Only GPS coordinates; borehole was situated within a few metres of HUD11-7;
- **HUD13-04** Only GPS coordinates;
- **HUD11-05** Only GPS coordinates;
- **HUD13-7C** Only GPS coordinates; borehole was situated within a few metres of HUD13-7.
Coal Assessment Report for the Hudette coal property, British Columbia
Coal Assessment Report for the Hudette coal property, British Columbia
Table 3-5: Current (2011-2013) drilling at Hudette

<table>
<thead>
<tr>
<th>Borehole</th>
<th>Drilling method</th>
<th>Year</th>
<th>Easting NAD83</th>
<th>Northing NAD83</th>
<th>Elevation (m)</th>
<th>Total Depth (m)</th>
<th>Orientation</th>
<th>Casing Depth (m)</th>
<th>Start Date</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD11-01</td>
<td>Air-rotary</td>
<td>2011</td>
<td>556021.559</td>
<td>6147896.614</td>
<td>1305.62</td>
<td>178</td>
<td>-60° → 210</td>
<td>4.87</td>
<td>14-Sep-11</td>
<td>21-Sep-11</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>Air-rotary</td>
<td>2011</td>
<td>555778.768</td>
<td>6147907.192</td>
<td>1327.854</td>
<td>220</td>
<td>-60° → 210</td>
<td>4.9</td>
<td>21-Sep-11</td>
<td>26-Sep-11</td>
</tr>
<tr>
<td>HUD11-03</td>
<td>Air-rotary</td>
<td>2011</td>
<td>556325.245</td>
<td>6147854.238</td>
<td>1306.719</td>
<td>177</td>
<td>-60° → 210</td>
<td>13.57</td>
<td>27-Sep-11</td>
<td>4-Oct-11</td>
</tr>
<tr>
<td>HUD11-07</td>
<td>Air-rotary</td>
<td>2011</td>
<td>555851.179</td>
<td>6148185.765</td>
<td>1190.397</td>
<td>244</td>
<td>-60° → 210</td>
<td>26.82</td>
<td>27-Oct-11</td>
<td>5-Nov-11</td>
</tr>
<tr>
<td>HUD11-08</td>
<td>Air-rotary</td>
<td>2011</td>
<td>555854.232</td>
<td>6148187.484</td>
<td>1191.954</td>
<td>217</td>
<td>Vertical</td>
<td>19.82</td>
<td>6-Nov-11</td>
<td>30-Nov-11</td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>Spot-Coring</td>
<td>2012</td>
<td>556021.559</td>
<td>6147896.61</td>
<td>1305.62</td>
<td>123</td>
<td>-60° → 210</td>
<td>6.09</td>
<td>8-Sep-12</td>
<td>17-Sep-12</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>Spot-Coring</td>
<td>2012</td>
<td>555851.179</td>
<td>6148185.77</td>
<td>1190.397</td>
<td>160</td>
<td>-60° → 210</td>
<td>21.33</td>
<td>17-Sep-12</td>
<td>22-Sep-12</td>
</tr>
<tr>
<td>HUD12-01</td>
<td>Air-rotary</td>
<td>2012</td>
<td>556020.759</td>
<td>6147382.276</td>
<td>1292.957</td>
<td>235</td>
<td>-60° → 215</td>
<td>18.29</td>
<td>25-Jun-12</td>
<td>28-Jun-12</td>
</tr>
<tr>
<td>HUD12-02</td>
<td>Air-rotary</td>
<td>2012</td>
<td>555201.853</td>
<td>6148570.556</td>
<td>1126.995</td>
<td>187</td>
<td>-60° → 215</td>
<td>41.14</td>
<td>24-Jun-12</td>
<td>30-Jun-12</td>
</tr>
<tr>
<td>HUD12-04</td>
<td>Air-rotary</td>
<td>2012</td>
<td>556546.288</td>
<td>6147761.419</td>
<td>1321.636</td>
<td>248</td>
<td>-75° → 215</td>
<td>33.52</td>
<td>28-Jun-12</td>
<td>3-Jul-12</td>
</tr>
<tr>
<td>HUD12-05</td>
<td>Air-rotary</td>
<td>2012</td>
<td>555726.238</td>
<td>6147655.415</td>
<td>1303.013</td>
<td>125</td>
<td>-60° → 215</td>
<td>4.57</td>
<td>3-Jul-12</td>
<td>5-Jul-12</td>
</tr>
<tr>
<td>HUD12-06</td>
<td>Air-rotary</td>
<td>2012</td>
<td>556472.887</td>
<td>6148092.22</td>
<td>1291.298</td>
<td>241</td>
<td>-60° → 035</td>
<td>9.14</td>
<td>3-Jul-12</td>
<td>7-Jul-12</td>
</tr>
</tbody>
</table>

Year 2011 Total Holes = 9 Total Depth=1587m
Table 3-5: Current (2011-2013) drilling at Hudette (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>Drilling method</th>
<th>Year</th>
<th>Easting NAD83</th>
<th>Northing NAD83</th>
<th>Elevation (m)</th>
<th>Total Depth (m)</th>
<th>Orientation</th>
<th>Casing Depth (m)</th>
<th>Start Date</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD12-07</td>
<td>Air-rotary</td>
<td>2012</td>
<td>556093.89</td>
<td>6148000.292</td>
<td>1257.598</td>
<td>192</td>
<td>-60° → 215</td>
<td>12.19</td>
<td>6-Jul-12</td>
<td>8-Jul-12</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>Air-rotary</td>
<td>2012</td>
<td>556595.161</td>
<td>6148235.573</td>
<td>1279.571</td>
<td>213</td>
<td>-60° → 035</td>
<td>12.19</td>
<td>7-Jul-12</td>
<td>13-Jul-12</td>
</tr>
<tr>
<td>HUD12-09</td>
<td>Air-rotary</td>
<td>2012</td>
<td>556810.651</td>
<td>6147865.617</td>
<td>1298.987</td>
<td>210</td>
<td>-60° → 035</td>
<td>39.62</td>
<td>8-Jul-12</td>
<td>11-Jul-12</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>Air-rotary</td>
<td>2012</td>
<td>556786.637</td>
<td>6147584.111</td>
<td>1279.683</td>
<td>250</td>
<td>Vertical</td>
<td>6.09</td>
<td>11-Jul-12</td>
<td>14-Jul-12</td>
</tr>
<tr>
<td>HUD12-12</td>
<td>Air-rotary</td>
<td>2012</td>
<td>555993.804</td>
<td>6148351.068</td>
<td>1240.787</td>
<td>184</td>
<td>-60° → 035</td>
<td>9.14</td>
<td>17-Jul-12</td>
<td>19-Jul-12</td>
</tr>
<tr>
<td>HUD12-14</td>
<td>Air-rotary</td>
<td>2012</td>
<td>556897.626</td>
<td>6147275.746</td>
<td>1263.059</td>
<td>244</td>
<td>Vertical</td>
<td>36</td>
<td>20-Jul-12</td>
<td>22-Jul-12</td>
</tr>
<tr>
<td>HUD12-17</td>
<td>Air-rotary</td>
<td>2012</td>
<td>556352.742</td>
<td>6148351.254</td>
<td>1277.598</td>
<td>98</td>
<td>-60° → 035</td>
<td>6.06</td>
<td>24-Jul-12</td>
<td>25-Jul-12</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>Air-rotary</td>
<td>2012</td>
<td>556347.494</td>
<td>6148344.64</td>
<td>1277.424</td>
<td>251</td>
<td>Vertical</td>
<td>6.06</td>
<td>25-Jul-12</td>
<td>30-Jul-12</td>
</tr>
<tr>
<td>HUD12-20</td>
<td>Air-rotary</td>
<td>2012</td>
<td>557286.161</td>
<td>6147379.65</td>
<td>1257.962</td>
<td>250</td>
<td>-75° → 035</td>
<td>15.24</td>
<td>29-Jul-12</td>
<td>31-Jul-12</td>
</tr>
<tr>
<td>HUD12-21</td>
<td>Air-rotary</td>
<td>2012</td>
<td>556804.515</td>
<td>6147858.59</td>
<td>1299.372</td>
<td>251</td>
<td>-60° → 215</td>
<td>42.67</td>
<td>31-Jul-12</td>
<td>5-Aug-12</td>
</tr>
<tr>
<td>HUD12-21C</td>
<td>Spot-coring</td>
<td>2012</td>
<td>556806.465</td>
<td>6147858.813</td>
<td>1299.616</td>
<td>116</td>
<td>-60° → 215</td>
<td>39.5</td>
<td>4-Sep-12</td>
<td>8-Sep-12</td>
</tr>
<tr>
<td>HUD12-22</td>
<td>Air-rotary</td>
<td>2012</td>
<td>556810.565</td>
<td>6148656.987</td>
<td>1289.631</td>
<td>244</td>
<td>Vertical</td>
<td>6.06</td>
<td>5-Aug-12</td>
<td>8-Aug-12</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>Air-rotary</td>
<td>2012</td>
<td>556614.906</td>
<td>6148467.995</td>
<td>1279.368</td>
<td>238</td>
<td>Vertical</td>
<td>9.14</td>
<td>30-Jul-12</td>
<td>12-Aug-12</td>
</tr>
<tr>
<td>Borehole</td>
<td>Drilling method</td>
<td>Year</td>
<td>Easting NAD83</td>
<td>Northing NAD83</td>
<td>Elevation (m)</td>
<td>Total Depth (m)</td>
<td>Orientation</td>
<td>Casing Depth (m)</td>
<td>Start Date</td>
<td>Completion Date</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>HUD12-28</td>
<td>Air-rotary</td>
<td>2012</td>
<td>556217.074</td>
<td>6148910.583</td>
<td>1312.711</td>
<td>253</td>
<td>Vertical</td>
<td>4.57</td>
<td>17-Aug-12</td>
<td>20-Aug-12</td>
</tr>
<tr>
<td>HUD12-29</td>
<td>Air-rotary</td>
<td>2012</td>
<td>556580.853</td>
<td>6148922.981</td>
<td>1327.379</td>
<td>233</td>
<td>Vertical</td>
<td>7.01</td>
<td>17-Aug-12</td>
<td>21-Aug-12</td>
</tr>
<tr>
<td>HUD12-31</td>
<td>Air-rotary</td>
<td>2012</td>
<td>555992.219</td>
<td>6149146.734</td>
<td>1329.012</td>
<td>250</td>
<td>Vertical</td>
<td>6.09</td>
<td>21-Aug-12</td>
<td>24-Aug-12</td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>Spot-coring</td>
<td>2012</td>
<td>555989.392</td>
<td>6149141.162</td>
<td>1328.285</td>
<td>241</td>
<td>Vertical</td>
<td>5.18</td>
<td>24-Aug-12</td>
<td>3-Sep-12</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>Air-rotary</td>
<td>2012</td>
<td>555960.62</td>
<td>6148601.757</td>
<td>1246.386</td>
<td>250</td>
<td>Vertical</td>
<td>6.09</td>
<td>26-Aug-12</td>
<td>30-Aug-12</td>
</tr>
<tr>
<td>HUD12-34</td>
<td>Air-rotary</td>
<td>2012</td>
<td>555754.252</td>
<td>6148542.778</td>
<td>1236.929</td>
<td>250</td>
<td>Vertical</td>
<td>4.57</td>
<td>31-Aug-12</td>
<td>2-Sep-12</td>
</tr>
</tbody>
</table>

Year-2012 Total Holes = 38 Total Depth=8274m

<table>
<thead>
<tr>
<th>Borehole</th>
<th>Drilling method</th>
<th>Year</th>
<th>Easting NAD83</th>
<th>Northing NAD83</th>
<th>Elevation (m)</th>
<th>Total Depth (m)</th>
<th>Orientation</th>
<th>Casing Depth (m)</th>
<th>Start Date</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD13-01C</td>
<td>Continuous coring</td>
<td>2013</td>
<td>555758.30</td>
<td>6147908.00</td>
<td>1325.07</td>
<td>110</td>
<td>-60° → 210</td>
<td>3.7</td>
<td>22-Jul-13</td>
<td>23-Jul-13</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>Continuous coring</td>
<td>2013</td>
<td>556337.40</td>
<td>6148335.00</td>
<td>1281.201</td>
<td>252</td>
<td>-60° → 035</td>
<td>5</td>
<td>24-Jul-13</td>
<td>27-Jul-13</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>Continuous coring</td>
<td>2013</td>
<td>555187.90</td>
<td>6148487.00</td>
<td>1139.78</td>
<td>183</td>
<td>-60° → 215</td>
<td>7.2</td>
<td>28-Jul-13</td>
<td>30-Jul-13</td>
</tr>
</tbody>
</table>
3.2.2.1 Year-2011 drilling

Nine holes for a total depth of 1,578 metres were drilled in the Hudette area in 2011 (Table 3-5). All 2011 drill holes were completed by Camco Drilling Company. Drilling was done using a track mounted air rotary drill rig. The hole and casing diameters were 63.5 mm and 12.7 cm respectively. Sumps were constructed at each site to accommodate drill cutting discharge. Drilling was carried out only in day shift. The holes were cased to bedrock and steel casing after completion of hole was generally left in the ground. Access to drill sites was via newly built trails connected to Falling Creek Road. Don Ho was responsible for constructing the trails and providing support services.

3.2.2.2 Year-2012 drilling

The year-2012 drilling was a continuation of the drilling programme started in year-2011. Thirty eight holes were drilled by RC Drilling using two rigs. Access to drill sites was via newly built trails connected to Falling Creek Road. Can West was responsible for constructing the trails and providing support services. The same equipment and procedures used in 2011 were used in the 2012 exploration effort.

Total length of drilling in 2012 was 8,274 metres. Spot coring was conducted in four holes (HUD11-01C, HUD11-07C, HUD12-21C and HUD12-31C). The spot coring intervals were based on coal intersections in boreholes HUD11-01, HUD11-07, HUD12-21 and HUD12-31.
3.2.2.3 Year-2013 drilling

Nine year-2013 holes (three of them continuously-cored and six of them by the air-rotary method) were drilled, with a cumulative depth of 1,654 metres. The three cored boreholes (HUD13-01C, HUD13-2C, and HUD13-03C) were completed by Boart Longyear, using an LF90-D diamond-drill. The drilling rig was supported by a water truck, skidder and drill rod hauling truck. Each drill crew consisted of a driller and a driller's helper. Drilling was carried out 24 hours with two drill shifts. The six air-rotary holes were drilled by G. Lindsay Drilling Company. Attempts were made at spot coring three of these holes, but recovery was very poor to none. Can West provided access and support services for both drilling companies.

3.3 Core Logging

All recovered cores, of coal and rock, were studied in detail. The study included rock and coal description, recording of structural data and sedimentary structures. Coal samples, along with roof rock and floor rock, were collected for analytical studies. Driller’s depths were adjusted to match geophysical log depths. Two continuous core holes (HUD13-1 and HUD13-02C) and four spot coring holes from year-2012 were also photographed.

Coring intervals in drill holes are presented below as Table 3-6 (also repeated as Table A-1 within Appendix A). Copies of all core logs are presented in Appendix A.

<table>
<thead>
<tr>
<th>Hole ID</th>
<th>From</th>
<th>To</th>
<th>Length</th>
<th>Core Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD11-01C</td>
<td>38.1</td>
<td>52.16</td>
<td>14.06</td>
<td>Spot</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>104.55</td>
<td>121.92</td>
<td>17.37</td>
<td>Spot</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>72.85</td>
<td>85.04</td>
<td>12.19</td>
<td>Spot</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>127.71</td>
<td>149.4</td>
<td>21.69</td>
<td>Spot</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>154.23</td>
<td>160.02</td>
<td>5.79</td>
<td>Spot</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD12-21C</td>
<td>39.32</td>
<td>43.28</td>
<td>3.96</td>
<td>Spot</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD12-21C</td>
<td>101.19</td>
<td>116.07</td>
<td>14.88</td>
<td>Spot</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>6.1</td>
<td>17.37</td>
<td>11.27</td>
<td>Spot</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>174.04</td>
<td>201.78</td>
<td>27.74</td>
<td>Spot</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>0</td>
<td>110</td>
<td>110</td>
<td>Continuous</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>0</td>
<td>251</td>
<td>251</td>
<td>Continuous</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>0</td>
<td>182</td>
<td>182</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>HUD13-04</td>
<td>75.59</td>
<td>82.46</td>
<td>6.87</td>
<td>Spot</td>
<td></td>
</tr>
<tr>
<td>HUD13-04</td>
<td>192.02</td>
<td>197.45</td>
<td>5.43</td>
<td>Spot</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>30</td>
<td>35.66</td>
<td>5.66</td>
<td>Spot</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>50.29</td>
<td>56.38</td>
<td>6.09</td>
<td>Spot</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>77.72</td>
<td>80.72</td>
<td>3</td>
<td>Spot</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>115.82</td>
<td>117.65</td>
<td>1.83</td>
<td>Spot</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>145</td>
<td>148.13</td>
<td>3.13</td>
<td>Spot</td>
<td></td>
</tr>
</tbody>
</table>
3.4 Borehole geophysics

Downhole geophysical surveys were conducted within each borehole completed during years 2011 to 2013. Century Geophysics Inc. carried out geophysical logging for all exploration programmes on the property. In all boreholes, when stable drill hole conditions prevailed, the following suites of geophysical logs were obtained:

- Compensated density/gamma/caliper/resistivity (9239C tool);
- Gamma/neutron (9057A tool);
- Verticality and deviation survey (9057A tool); and
- Dipmeter (9411 tool, provided that borehole conditions were acceptable for running this high-value tool)

Whenever possible, the geophysical tools were run into open holes, with the drilling rods having been removed beforehand. In cases where the holes were known to be blocked, or where poor ground conditions were otherwise suspected, a gamma-neutron tool, was run through the drill rods to obtain a basic log.

Copies of all downhole geophysical logs are presented in Appendix A, with an inventory of logs set forth below as Table 3-7 (also repeated as Table A-2 within Appendix A).
Coal Assessment Report for the Hudette coal property, British Columbia

Table 3-7: Geophysical logs run in current boreholes

<table>
<thead>
<tr>
<th>Borehole</th>
<th>UTM Easting (NAD83)</th>
<th>UTM Northing (NAD83)</th>
<th>Elevation (metres)</th>
<th>Total Depth (metres)</th>
<th>Gamma/Caliper</th>
<th>Resistivity/Density</th>
<th>Gamma/Neutron</th>
<th>Deviation</th>
<th>Dipmeter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD11-01</td>
<td>556021.559</td>
<td>6147896.61</td>
<td>1305.62</td>
<td>176.78</td>
<td>173.21</td>
<td>173.42</td>
<td>173.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-02</td>
<td>555778.768</td>
<td>6147907.19</td>
<td>1327.854</td>
<td>220.06</td>
<td>216.79</td>
<td>217.05</td>
<td>216.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>556325.245</td>
<td>6147854.24</td>
<td>1306.719</td>
<td>177</td>
<td>176.63</td>
<td>176.67</td>
<td>176.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>556246.549</td>
<td>6147767.82</td>
<td>1314.866</td>
<td>170.68</td>
<td>170.44</td>
<td>170.54</td>
<td>170.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>556429.398</td>
<td>6147619.5</td>
<td>1319.342</td>
<td>171.29</td>
<td>169.45</td>
<td>168.93</td>
<td>168.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-06</td>
<td>555554.409</td>
<td>6148210.3</td>
<td>1187.064</td>
<td>65.53</td>
<td>59.36</td>
<td>59.12</td>
<td>58.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>555851.179</td>
<td>6148185.77</td>
<td>1190.397</td>
<td>243.84</td>
<td>242.58</td>
<td>242.44</td>
<td>242.24</td>
<td>241.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>555854.232</td>
<td>6148187.48</td>
<td>1191.954</td>
<td>216.46</td>
<td>212.35</td>
<td>212.37</td>
<td>212</td>
<td>211.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>556698.394</td>
<td>6147412.51</td>
<td>1277.825</td>
<td>144.78</td>
<td>142.23</td>
<td>142.25</td>
<td>142.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>556021.559</td>
<td>6147896.61</td>
<td>1305.62</td>
<td>122.92</td>
<td>122.5</td>
<td>122.42</td>
<td>122.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>555851.179</td>
<td>6148185.77</td>
<td>1190.397</td>
<td>160.02</td>
<td>159.44</td>
<td>159.5</td>
<td>159.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>556020.759</td>
<td>6147382.28</td>
<td>1292.957</td>
<td>234.69</td>
<td>229.85</td>
<td>230.4</td>
<td>230.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-02</td>
<td>555201.853</td>
<td>6148570.56</td>
<td>1126.995</td>
<td>187.45</td>
<td>186.4</td>
<td>186.44</td>
<td>186.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-03</td>
<td>555607.376</td>
<td>6148330.32</td>
<td>1149.073</td>
<td>225.52</td>
<td>224.33</td>
<td>211.88</td>
<td>211.68</td>
<td>223.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-04</td>
<td>556546.288</td>
<td>6147761.42</td>
<td>1321.636</td>
<td>247.88</td>
<td>247.46</td>
<td>90.08</td>
<td>89.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-05</td>
<td>555726.238</td>
<td>6147655.42</td>
<td>1303.013</td>
<td>124.96</td>
<td>88.24</td>
<td>92</td>
<td>91.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-06</td>
<td>556472.887</td>
<td>6148092.22</td>
<td>1291.298</td>
<td>240.79</td>
<td>239.24</td>
<td>239.18</td>
<td>238.98</td>
<td>238.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-07</td>
<td>556093.89</td>
<td>6148000.29</td>
<td>1257.598</td>
<td>192.02</td>
<td>190.48</td>
<td>190.6</td>
<td>190.4</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-08</td>
<td>556595.161</td>
<td>6148235.57</td>
<td>1279.571</td>
<td>213.36</td>
<td>211.52</td>
<td>212.03</td>
<td>211.84</td>
<td>211.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-09</td>
<td>556810.651</td>
<td>6147865.62</td>
<td>1298.987</td>
<td>210.31</td>
<td>206.04</td>
<td>205.37</td>
<td>205.18</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-10</td>
<td>556786.637</td>
<td>6147584.11</td>
<td>1279.683</td>
<td>249.93</td>
<td>242.88</td>
<td>242.96</td>
<td>242.76</td>
<td>241.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-11</td>
<td>556556.222</td>
<td>6147500.8</td>
<td>1275.184</td>
<td>240.79</td>
<td>235.08</td>
<td>235.58</td>
<td>235.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-12</td>
<td>555993.804</td>
<td>6148351.07</td>
<td>1240.787</td>
<td>184.4</td>
<td>183.54</td>
<td>183.46</td>
<td>183.26</td>
<td>183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-13</td>
<td>555992.605</td>
<td>6148348.66</td>
<td>1235.37</td>
<td>259.08</td>
<td>206.03</td>
<td>214.64</td>
<td>214.44</td>
<td>206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-14</td>
<td>556897.626</td>
<td>6147275.75</td>
<td>1263.059</td>
<td>243.84</td>
<td>242.82</td>
<td>243.06</td>
<td>242.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-15</td>
<td>556244.411</td>
<td>6148195.49</td>
<td>1299.045</td>
<td>195.07</td>
<td>193.05</td>
<td>192.97</td>
<td>192.78</td>
<td>192.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-16</td>
<td>557189.425</td>
<td>6147110.07</td>
<td>1210.341</td>
<td>252.98</td>
<td>250.74</td>
<td>250.76</td>
<td>250.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-17</td>
<td>556352.742</td>
<td>6148351.25</td>
<td>1277.598</td>
<td>97.53</td>
<td>92.34</td>
<td>92.46</td>
<td>92.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-18</td>
<td>557426.679</td>
<td>6147037.93</td>
<td>1179.417</td>
<td>210.31</td>
<td>209.49</td>
<td>209.51</td>
<td>209.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borehole</td>
<td>UTM Easting (NAD83)</td>
<td>UTM Northing (NAD83)</td>
<td>Elevation (metres)</td>
<td>Total Depth (metres)</td>
<td>Gamma/Caliper</td>
<td>Resistivity/Density</td>
<td>Gamma/Neutron</td>
<td>Deviation</td>
<td>Dipmeter</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-----------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>556347.494</td>
<td>6148344.64</td>
<td>1277.424</td>
<td>251.46</td>
<td>249.96</td>
<td>249.9</td>
<td>249.7</td>
<td>249.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-20</td>
<td>557286.161</td>
<td>6147379.65</td>
<td>1257.962</td>
<td>249.93</td>
<td>248.67</td>
<td>248.71</td>
<td>248.52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>556804.515</td>
<td>6147958.59</td>
<td>1299.372</td>
<td>251.46</td>
<td>146.54</td>
<td>160.06</td>
<td>159.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-21C</td>
<td>556806.465</td>
<td>6147858.81</td>
<td>1299.616</td>
<td>116.43</td>
<td>115.9</td>
<td>115.92</td>
<td>115.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-22</td>
<td>556810.565</td>
<td>6148567.99</td>
<td>1289.631</td>
<td>243.84</td>
<td>240.19</td>
<td>240.37</td>
<td>240.18</td>
<td>239.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-23</td>
<td>556614.906</td>
<td>6148486</td>
<td>1279.368</td>
<td>237.74</td>
<td>232.85</td>
<td>232.99</td>
<td>232.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-24</td>
<td>557172.414</td>
<td>6148394.41</td>
<td>1283.039</td>
<td>298.7</td>
<td>296.31</td>
<td>296.35</td>
<td>296.16</td>
<td>295.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>557649.184</td>
<td>6147791.68</td>
<td>1236.418</td>
<td>259.08</td>
<td>257.84</td>
<td>257.88</td>
<td>257.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-26</td>
<td>557167.471</td>
<td>6147887.06</td>
<td>1259.732</td>
<td>210.31</td>
<td>173.43</td>
<td>173.37</td>
<td>173.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-27</td>
<td>557167.938</td>
<td>6147887.62</td>
<td>1259.933</td>
<td>85.29</td>
<td>84.12</td>
<td>83.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-28</td>
<td>556217.074</td>
<td>6148910.58</td>
<td>1312.711</td>
<td>252.98</td>
<td>252.13</td>
<td>252.05</td>
<td>251.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-29</td>
<td>556580.853</td>
<td>6148922.98</td>
<td>1327.379</td>
<td>232.52</td>
<td>230.72</td>
<td>230.76</td>
<td>230.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-30</td>
<td>556567.305</td>
<td>6149178.54</td>
<td>1311.241</td>
<td>249.93</td>
<td>210.46</td>
<td>227.76</td>
<td>227.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-31</td>
<td>555992.219</td>
<td>6149146.73</td>
<td>1329.012</td>
<td>249.93</td>
<td>248.69</td>
<td>248.53</td>
<td>248.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>555989.392</td>
<td>6149141.16</td>
<td>1328.285</td>
<td>240.79</td>
<td>236.69</td>
<td>237.07</td>
<td>236.88</td>
<td>236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-32</td>
<td>555714.734</td>
<td>6148735.36</td>
<td>1305.794</td>
<td>249.93</td>
<td>249.21</td>
<td>249.27</td>
<td>249.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-33</td>
<td>555960.62</td>
<td>6148601.76</td>
<td>1246.386</td>
<td>249.93</td>
<td>247.91</td>
<td>248.43</td>
<td>248.24</td>
<td>247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-34</td>
<td>555754.252</td>
<td>6148542.78</td>
<td>1236.929</td>
<td>249.94</td>
<td>243.97</td>
<td>246.18</td>
<td>245.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>555758.30</td>
<td>6147908.00</td>
<td>1325.07</td>
<td>110</td>
<td>109.63</td>
<td>109.49</td>
<td>109.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>556337.40</td>
<td>6148335.00</td>
<td>1281.201</td>
<td>252</td>
<td>251.12</td>
<td>251.04</td>
<td>251.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>555187.90</td>
<td>6148487.00</td>
<td>1139.78</td>
<td>182.5</td>
<td>181.83</td>
<td>181.77</td>
<td>181.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD13-04</td>
<td>556466</td>
<td>6148758</td>
<td>1308</td>
<td>199</td>
<td>197.45</td>
<td>188.06</td>
<td>197.59</td>
<td>196.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>556737</td>
<td>6148438</td>
<td>1288</td>
<td>188.97</td>
<td>188.07</td>
<td>188.06</td>
<td>187.86</td>
<td>187.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD13-06</td>
<td>556004.29</td>
<td>6147626.2</td>
<td>1317.121</td>
<td>208.26</td>
<td>207.7</td>
<td>207.32</td>
<td>207.12</td>
<td>207.12</td>
<td>151.5</td>
<td></td>
</tr>
<tr>
<td>HUD13-07</td>
<td>555321.784</td>
<td>6147938.35</td>
<td>1191.231</td>
<td>240.79</td>
<td>240.75</td>
<td>240.71</td>
<td>240.52</td>
<td>239.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD13-07C</td>
<td>555321.784</td>
<td>6147938.35</td>
<td>1191.231</td>
<td>59.43</td>
<td>58.53</td>
<td>58.88</td>
<td>58.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD13-08</td>
<td>556446.229</td>
<td>6147895.16</td>
<td>1311.11</td>
<td>213.36</td>
<td>210.72</td>
<td>210.82</td>
<td>210.62</td>
<td>210</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.5 Sampling and analytical work

Fifty-six samples (Table 3-8, repeated as Table B-1 within Appendix B) from Hudette property were sent to laboratories for quality analyses. Twenty of these samples were collected in 2012 and 36 were collected in 2013. Year-2012 samples were sent to Loring Laboratories whereas year-2013 samples were partially analysed in Walter Energy’s in-house laboratory at the Wolverine mine site, and partially analysed externally, by ALS. Proximate analyses, sulphur, calorific value, and Free Swelling Index (FSI) were completed on year-2012 samples, whereas proximate and ultimate analyses, fluidity, Arnu Dilatation, ash fusibility and ash chemistry determinations were conducted on year-2013 samples. Results of all these analyses are presented within Appendix B of this report.

Petrographic analyses were conducted only on samples collected in 2013. Results of the petrographic analyses are presented within Appendix C of this report.

Table 3-8: Sample inventory

<table>
<thead>
<tr>
<th>Borehole</th>
<th>Sample tag number</th>
<th>Seam</th>
<th>Metres</th>
<th>Thickness</th>
<th>Recovered</th>
<th>Recovery %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>From</td>
<td>To</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-21C</td>
<td>3443</td>
<td>F</td>
<td>104.67</td>
<td>107.29</td>
<td>2.62</td>
<td>0.55</td>
</tr>
<tr>
<td>HUD12-21C</td>
<td>3444</td>
<td>F</td>
<td>107.29</td>
<td>110.34</td>
<td>3.05</td>
<td>0.64</td>
</tr>
<tr>
<td>HUD12-21C</td>
<td>3445</td>
<td>F</td>
<td>110.34</td>
<td>112.43</td>
<td>2.09</td>
<td>0.49</td>
</tr>
<tr>
<td>HUD12-21C</td>
<td>3446</td>
<td>Coal</td>
<td>115.9</td>
<td>116.07</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>3447</td>
<td>B</td>
<td>10.90</td>
<td>16.00</td>
<td>5.10</td>
<td>0.43</td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>3448</td>
<td>B</td>
<td>185.0</td>
<td>186.84</td>
<td>1.84</td>
<td>0.4</td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>3449</td>
<td>B</td>
<td>186.84</td>
<td>191.60</td>
<td>4.76</td>
<td>1.36</td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>3450</td>
<td>B</td>
<td>40</td>
<td>41.83</td>
<td>1.83</td>
<td>0.53</td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>3451</td>
<td>C</td>
<td>48.6</td>
<td>50.68</td>
<td>2.08</td>
<td>1.37</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>3452</td>
<td>B</td>
<td>73.51</td>
<td>75.55</td>
<td>2.04</td>
<td>0.74</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>3453</td>
<td>C</td>
<td>76.72</td>
<td>78.00</td>
<td>1.28</td>
<td>0.45</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>3454</td>
<td>C</td>
<td>78.45</td>
<td>79.78</td>
<td>1.33</td>
<td>0.29</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>3455</td>
<td>D</td>
<td>81.78</td>
<td>83.52</td>
<td>1.74</td>
<td>1.19</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>3456</td>
<td>F</td>
<td>130.20</td>
<td>131.00</td>
<td>0.80</td>
<td>0.4</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>3457</td>
<td>F</td>
<td>131.00</td>
<td>133.51</td>
<td>2.51</td>
<td>1.89</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>3458</td>
<td>B</td>
<td>134.07</td>
<td>137.11</td>
<td>3.04</td>
<td>2.74</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>3459</td>
<td>B</td>
<td>137.11</td>
<td>139.50</td>
<td>2.39</td>
<td>1.73</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>3460</td>
<td>C</td>
<td>139.50</td>
<td>142.19</td>
<td>2.69</td>
<td>2.63</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>3461</td>
<td>C</td>
<td>142.19</td>
<td>144</td>
<td>1.81</td>
<td>0.36</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>3462</td>
<td>F</td>
<td>144</td>
<td>147.24</td>
<td>3.24</td>
<td>1.9</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>10392</td>
<td>B</td>
<td>5.67</td>
<td>7.25</td>
<td>1.58</td>
<td>1.58</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>10393</td>
<td>B</td>
<td>7.25</td>
<td>7.9</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>10394</td>
<td>C</td>
<td>9.2</td>
<td>10.25</td>
<td>1.05</td>
<td>0.85</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>10395</td>
<td>C</td>
<td>10.55</td>
<td>11.9</td>
<td>1.35</td>
<td>1.35</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>10396</td>
<td>D</td>
<td>14</td>
<td>15.9</td>
<td>1.9</td>
<td>1.27</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>10397</td>
<td>E</td>
<td>46.75</td>
<td>47.58</td>
<td>0.83</td>
<td>0.83</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>10398</td>
<td>F</td>
<td>64.25</td>
<td>64.7</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>10399</td>
<td>F</td>
<td>66</td>
<td>67.55</td>
<td>1.55</td>
<td>1.55</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>10400</td>
<td>F</td>
<td>67.55</td>
<td>68.25</td>
<td>0.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Table 3-8: Sample inventory (concluded)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>Sample tag number</th>
<th>Seam number</th>
<th>Seams</th>
<th>Metres</th>
<th>Thickness</th>
<th>Recovered</th>
<th>Recovery %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>From</td>
<td>To</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>1976</td>
<td>G</td>
<td>G</td>
<td>82.4</td>
<td>82.75</td>
<td>0.35</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td></td>
<td>G</td>
<td></td>
<td>83.22</td>
<td>84</td>
<td>0.78</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>12651</td>
<td>A</td>
<td>A</td>
<td>37.8</td>
<td>39.32</td>
<td>1.52</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td></td>
<td>B</td>
<td>B</td>
<td>59.1</td>
<td>60.6</td>
<td>1.5</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>12655</td>
<td>C</td>
<td>C</td>
<td>84.70</td>
<td>85.10</td>
<td>0.40</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>12656</td>
<td>C</td>
<td>C</td>
<td>85.5</td>
<td>86.45</td>
<td>0.95</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>12657</td>
<td>D</td>
<td>D</td>
<td>89.9</td>
<td>91.4</td>
<td>1.5</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>12658</td>
<td>E</td>
<td>E</td>
<td>130.05</td>
<td>131.63</td>
<td>1.58</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>12659</td>
<td>F</td>
<td>F</td>
<td>148.35</td>
<td>149.02</td>
<td>0.67</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>12660</td>
<td>F</td>
<td>F</td>
<td>149.02</td>
<td>150.7</td>
<td>1.68</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>12661</td>
<td>F</td>
<td>F</td>
<td>150.7</td>
<td>151</td>
<td>0.3</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>12662</td>
<td>G</td>
<td>G</td>
<td>161.6</td>
<td>162.15</td>
<td>0.55</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>12663</td>
<td>G</td>
<td>G</td>
<td>162.67</td>
<td>163.6</td>
<td>0.93</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>12664</td>
<td>H</td>
<td>H</td>
<td>178.3</td>
<td>179.6</td>
<td>1.3</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>12665</td>
<td>Coal</td>
<td></td>
<td>197</td>
<td>197.37</td>
<td>0.37</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>12666</td>
<td>J</td>
<td>J</td>
<td>201.45</td>
<td>203.05</td>
<td>1.6</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>12667</td>
<td>K</td>
<td>K</td>
<td>235.7</td>
<td>236.35</td>
<td>0.65</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>12668</td>
<td>K</td>
<td>K</td>
<td>236.8</td>
<td>239.4</td>
<td>2.6</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>12669</td>
<td>K</td>
<td>K</td>
<td>239.4</td>
<td>240.8</td>
<td>1.4</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>12670</td>
<td>Coal</td>
<td></td>
<td>12</td>
<td>12.3</td>
<td>0.3</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>12671</td>
<td>F</td>
<td>F</td>
<td>61.85</td>
<td>63.2</td>
<td>1.35</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>12672</td>
<td>F</td>
<td>F</td>
<td>63.2</td>
<td>64.55</td>
<td>1.35</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>12673</td>
<td>G</td>
<td>G</td>
<td>68.42</td>
<td>69.45</td>
<td>1.03</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>12674</td>
<td>H</td>
<td>H</td>
<td>84.9</td>
<td>85.7</td>
<td>0.8</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>12675</td>
<td>I</td>
<td>I</td>
<td>103.8</td>
<td>104.2</td>
<td>0.4</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>1826</td>
<td>J</td>
<td>J</td>
<td>117.2</td>
<td>118.6</td>
<td>1.4</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-04</td>
<td>1853</td>
<td>B</td>
<td>B</td>
<td>78.8</td>
<td>80.3</td>
<td>1.5</td>
<td>100</td>
</tr>
<tr>
<td>HUD13-04</td>
<td>1854</td>
<td>B</td>
<td>B</td>
<td>80.3</td>
<td>81.78</td>
<td>1.48</td>
<td>100</td>
</tr>
</tbody>
</table>
4 Geological setting

4.1 Regional setting

The strata which host the coalfields of northeastern British Columbia include marine and non-marine clastic sediments of late Jurassic, Cretaceous, and early Tertiary age, which is part of a thick molasse sequence with lesser proportion of flysch, deposited in the Rocky Mountain Foreland Basin.

The Foreland Basin is surrounded by the Cordilleran Orogen to the west, and the cratonic rocks and Palaeozoic cover sequence of the Canadian Shield to the east.

Most of the basin-filling sediments were derived from orogenically-uplifted land masses to the west and deposited into a foredeep to the east, although patterns of sedimentation were to some extent influenced by occasional vertical movements of underlying structures within the cratonic basement rocks, chief amongst which was the Peace River Arch (Stott, 1968).

The geology of the northeastern British Columbia coalfields is complex, both in terms of sedimentation and of tectonics. The region is characterised by complex tectonic and sedimentary regime which developed during late Jurassic to early Tertiary times. During the Late Mesozoic and Early Cenozoic, northeastern British Columbia underwent two main phases of deformation; the Columbian Orogeny, from Late Jurassic to earliest Late Cretaceous time, and the Laramide Orogeny, from Late Cretaceous to Oligocene time (Douglas et al., 1970). Deformation generally comprised northeast-verging thrusting and folding, producing a mountainous region, broadly termed the Rocky Mountain Thrust Belt. The Rocky Mountains represent the remnants of the foreland thrust and fold structural province of the Columbian orogeny. The northern Rocky Mountains are divided into two sub-provinces on the basis of deformation intensity: the Mountains and the Foothills (Thompson, 1979). Cretaceous coal-measures and associated marine rocks largely lie within the Foothills sub-province, which in northeast British Columbia consists mainly of folded strata.

Continental and marine sedimentary rocks interfinger and alternate, in keeping with transgressive and regressive cycles along the western edge of the Western Canadian Sedimentary Basin. These cycles gave rise to depositional environments that ranged from marine to near-shore, deltaic, and alluvial, thus containing sequences which grade laterally and vertically into alluvial-deltaic sandstone, siltstone, conglomerate, mudstone and coal facies.

4.2 Regional stratigraphy

The regional stratigraphy of the Peace River coalfields has been described by Duff and Gilchrist (1981), Hughes (1963, 1964, 1967), and Stott (1967, 1968, 1974). Interpretation of the sedimentary facies and division of strata into groups, formations and member status varies between the authors. The stratigraphic names assigned to groups, formation and members are also different for some stratigraphic intervals. The major difference in property stratigraphy between these authors lies with the interpretation of Jura-Cretaceous rocks underlying the Gething Formation. The sub-Gething rocks have been variously referred to the Dresser (sensu Hughes) or Cadomin (sensu Stott) formations.

4.2.1 Definition of the Cadomin Formation

The Cadomin Formation is a stratigraphic unit of Early Cretaceous (Barremian to Aptian) age,
extending from western Alberta to northeast British Columbia. The type locality of the formation is near the town of Cadomin, in north-central Alberta. The Cadomin ranges from nil to at least 200 metres (660 feet) in thickness (McLean, 1977).

4.2.2 Definition of the Dresser Formation

The Dresser Formation is 370 metres thick at its type locality (Hughes, 1964), and measured at 350 metres in outcrops within the Falling Creek area (Klatzel-Mudry et al., 1984). For this report, the stratigraphic nomenclature as described by Hughes (1964) is being adopted because his description of formation lithology appears to be similar to the rocks on the ground in Hudette property.

4.2.3 Stratigraphic sequence

The stratigraphic sequence in the Falling Creek region (Hudette and surrounding areas) consists of Lower Cretaceous sediments of the Beaudette, Crassier, and Fort St. Groups (as shown in Figure 4-1). The Beaudette Group (Hughes, 1964) is composed of continental sands to shales truncated by a low angle regional unconformity. The top of the Beaudette Group is marked by an unconformity. The group is not economically important for coal within the Hudette coal property.

The Crassier Group overlies the Beaudette Group and includes the Dresser and Gething formations. Crassier rocks comprise continental alluvial-deltaic sediments deposited along the western margin of the Rocky Mountain Foreland Basin. Generally, these sediments begin to thin eastward and northeastward across the Foothills of northeastern British Columbia, and into the plains of northwestern Alberta. The base of Crassier Group is a regional and angular unconformity that truncates older Cretaceous and Jurassic strata below; it marks a major event in the development of basin. Generally, the region is characterised by inter-tonguing of marine and continental sediments above this unconformity.

The Dresser Formation consists of continental sand and conglomerate with probable source area to the west. The Dresser Formation is overlain by the Gething Formation which is composed of sandstone, siltstone, mudstone, minor conglomerate and coal. The potentially-economic coal deposits of the Hudette study area occur within the Gething Formation. In the Burnt River / Sukunka River area, Gibson (1992) divided the Gething Formation into three subdivisions which, in ascending order, are the Gaylard, Bullmoose and Chamberlain members. The Chamberlain and Gaylard are considered coal-bearing members within those areas. These members were also recognised as parts of the Gething Formation within the adjacent Mink Creek property (Sultan and Cathyl-Huhn, 2014). However, at this stage, presence of the three members of the Gething are not confirmed in the Hudette property, probably due to lack of sufficient data. For this reason, Hughes' 1964 stratigraphic nomenclature is followed within the Hudette property.

The Fort St John Group is composed of, in ascending order, the Moosebar Formation, Gates Formation, Boulder Creek Formation and Shaftesbury Formation. These formations were deposited in marine, transitional and continental settings. The Moosebar Formation constitutes the youngest recognised strata in Hudette property.
Ages of the formations in the area are Upper Beaudette Group (Late Jurassic to Earliest Cretaceous), Dresser Formation (Barremian), Getting Formation (Barremian to Earliest Albian) and Moosebar Formation (Early Albian).
4.3 Local stratigraphy

Based upon examination of outcrops, core study and geophysical log interpretation, the following stratigraphic sequence from top to bottom have been identified in Hudette property.

1. Moosebar Formation
2. Gething Formation
3. Dresser Formation

Most of the Hudette property is underlain by the Gething Formation, which also is the main focus of this study. The Moosebar and Dresser formations are also locally exposed. Since the area is heavily forested and overlain by a thick blanket of glacial till (overburden), complete stratigraphic sections of any of the above formations are not exposed. Most of the outcrop data were recorded from isolated exposures, generally along the Falling Creek Connector Road or newly built trails, as the outcrops were exposed during construction.

Relationships between the various formations that occur within and adjacent to the Hudette property were plotted on a map which was originally compiled at 1:20,000 scale (Map 2-4). This map is combination of both recent work done in 2010-2013 by WCCP and Western Coal and compiled historic data. Geological contacts shown on the maps, as derived from recent study, are generally inferred because complete sections were not exposed due to vegetation and overburden.

4.3.1 Moosebar Formation

The Moosebar Formation occurs within the lower part of the Fort St John Group. It was originally defined by McLearn (1923), who gave the type locality at the southeastern end of the Peace River Canyon. The formation is about 289 metres (950 feet) thick at its type locality, but thins southeasterly along the Foothills. The age of the formation is late Early Albian (Stott, 1968).

Due to the recessive and heavily-weathered nature of Moosebar outcrops, the formation is best described from drill core. Where exposed, it is found as low relief, crumbly, thin bedded shale. It may also be found at the surface as a light to dark grey, fine grained sandstone; medium-bedded, often with crossbeds.

The sporadic outcrops of the Moosebar Formation occur in the southwestern part of the current exploration area. The formation has previously been mapped in northwestern portion of the Hudette property (Klatzel-Mudry et al., 1984). During 2011-2013 exploration drilling, the formation was intersected in 24 drill holes (Table 4-1), although some of these holes are very closely spaced. The formation has also been reported from a historical drill hole (83-18) in the same area. Boreholes which intersected the Moosebar Formation are generally located in the central portion of the investigated area.

The Moosebar Formation is the most consistent stratigraphic marker within the broader Falling Creek area, including the Hudette property. The complete section of the formation was not intersected during the 2011-2013 drilling programme because all current boreholes were spudded below the Moosebar's upper contact. The thickest Moosebar section (250 metres) was intersected in HUD12-29 but its true thickness could not be confirmed owing to lack of dip information.

Although three holes were continuously cored during the year 2013, only one hole
Coal Assessment Report for the Hudette coal property, British Columbia

(HUD13-02C) crossed a small section (Table 4-1) of the formation. A historical core hole (83-18) also intersected 35 metres of the formation. Data from core logging and geophysical logging of Hudette area and adjacent areas, particularly Mink Creek property were utilised for establishing the stratigraphy of the Moosebar Formation in Hudette area.

The Moosebar Formation in the Falling Creek area is composed of three distinct members, which from bottom to top are: the Bluesky Member, the Mudstone Member and the Bioturbated Siltstone Member (Klatzel-Mudry et al., 1984). The intersected Moosebar sections in Hudette area include Mudstone Member and Bluesky Member with the exception of borehole HUD12-29 where the Siltstone Member also occurs.

The following table shows the thicknesses of Mudstone Member and Bluesky Member interpreted from geophysical logs and core logs.

<table>
<thead>
<tr>
<th>Borehole</th>
<th>Mudstone Member</th>
<th>Bluesky Member</th>
<th>Mudstone Member</th>
<th>Bluesky Member</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD11-03</td>
<td>36.93</td>
<td>11.06</td>
<td>unknown</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>18.08</td>
<td></td>
<td>18.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>23.17</td>
<td></td>
<td>23.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>22.06</td>
<td></td>
<td>16.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>71.71</td>
<td>26.2</td>
<td>unknown</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>HUD12-03</td>
<td>12.47</td>
<td></td>
<td>11.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-05</td>
<td>121</td>
<td></td>
<td>unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-06</td>
<td>120.79</td>
<td></td>
<td>77.65</td>
<td></td>
<td>Faulted contact</td>
</tr>
<tr>
<td>HUD12-07</td>
<td>23.31</td>
<td>23.3</td>
<td>22.96</td>
<td>22.95</td>
<td></td>
</tr>
<tr>
<td>HUD12-08</td>
<td>15.31</td>
<td></td>
<td>14.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-17</td>
<td>34.44</td>
<td>27.5</td>
<td>22.14</td>
<td>17.68</td>
<td>Approximately same location</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>15.44</td>
<td>17.3</td>
<td>14.51</td>
<td>16.26</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>13.46</td>
<td></td>
<td>unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-26</td>
<td>13.54</td>
<td></td>
<td>unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-27</td>
<td>60.86</td>
<td>12.0</td>
<td>unknown</td>
<td>unknown</td>
<td>Hole along dip?</td>
</tr>
<tr>
<td>HUD12-28</td>
<td>104.43</td>
<td>31.65</td>
<td>unknown</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>HUD12-29</td>
<td>221</td>
<td></td>
<td>unknown</td>
<td>Did not reach base of Moosebar Formation</td>
<td></td>
</tr>
<tr>
<td>HUD12-30</td>
<td>95.86</td>
<td>15.0</td>
<td>unknown</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>HUD12-31</td>
<td>81.7</td>
<td>13</td>
<td>52.52</td>
<td>8.36</td>
<td>Below Gething faulted</td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>72</td>
<td>15</td>
<td>46.28</td>
<td>9.64</td>
<td>Below Gething faulted</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>14</td>
<td>18.79</td>
<td>14</td>
<td>18.79</td>
<td></td>
</tr>
<tr>
<td>HUD13-04</td>
<td>24.78</td>
<td></td>
<td>18.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>7.19</td>
<td></td>
<td>4.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD13-07</td>
<td>80.5</td>
<td>2.6</td>
<td>61.67</td>
<td>9.65</td>
<td>Below Gething, faulted</td>
</tr>
<tr>
<td>83-18</td>
<td>19.87</td>
<td>17.33</td>
<td>19.87</td>
<td>17.33</td>
<td>Historic borehole</td>
</tr>
</tbody>
</table>

True thickness is given where dip data are available.
The geophysical log response of the Moosebar Formation is very distinct. The upper contact of the Bluesky Member is marked by a sharp downward deviation towards higher resistivity, lower gamma API and higher neutron API (Figure 4-2, below).

Following is a description, in downward stratigraphic order, of Moosebar Formation's members as recognised within the Hudette study area.

4.3.1.1 Bioturbated Siltstone Member

This member occurs above the Mudstone Member and is interpreted as a near shore marine facies. The member was recognised on geophysical log in only one hole (HUD 12-29). The apparent thickness of the Member is 62 metres in HUD12-29. Since no core or outcrops description is available from Hudette area, the characteristics from the adjacent property (Mink Creek property) are described here.
The Bioturbated Siltstone Member consists of siltstone, with minor sandstone and mudstone in lower part and very fine sandstone with minor mudstone and siltstone in upper part. The sandstone and siltstone are light to medium grey, but in outcrop, weather to medium to dark yellowish brown. Sandstone are very fine-grained, commonly well-sorted, and clean. Quartz and chert appear to be the principal detrital components. Pyritised worm tubes and burrows are common. Primary sedimentary structures include parallel bedding, cross bedding and ripples. Pyrite is associated with burrows and occasionally occurs as nodules and dissemination. Siltstones commonly include sandstone lenses and laminations. Mudstone interbeds are medium grey, silty to highly silty and commonly 4-5 centimetres in thickness. The sandstone interbeds are interpreted to be turbidite deposits (Duff and Gilchrist, 1981). This member correspond to the Moosebar Formation of the Mink property.

4.3.1.2 Mudstone Member

The Mudstone Member overlies the Bluesky Member and was encountered in 15 boreholes at Hudette. The maximum intersected true thickness is 77 metres (*Table 4-1*), although apparent thickness of 180 metres (with true thickness unknown) was encountered in one hole. The coring holes intersected only 20 metres of the lower section. The dominant lithology is medium dark grey to dark grey, commonly homogenous mudstone. The bedding is indistinct and laminations are rare. Horizontal and vertical burrows, pyritised worm tubes, and shell fragments are common. Pyrite is fairly common and occurs as nodules, dissemination, and in burrows.

The upper contact of this member is placed at the bottom of thick siltstone/sandstone sequence. The lower contact is marked at the top of the glauconitic sandy mudstone.

The mudstones are interpreted as offshore deposits. Carmichael (1983) suggested these mudstones to be mainly fairweather suspension deposits while coarser material was supplied to the offshore during storm events.

Although similarities occur in the lower part of the Bullmoose Member within the Mink property and the Mudstone Member within the Hudette property, further investigations are needed to correlate these two members.

4.3.1.3 Bluesky Member

The Bluesky Member was intersected in 21 boreholes (*Table 4-1*). The glauconitic zone is exposed in outcrops near HUD11-01(situated at UTM 556077 E, 6147921 N). The Bluesky generally ranges in thickness from 12 to 22 metres with one exception of 27 metres in hole HUD12-17. The Bluesky is a transitional unit and there is some debate whether it should be placed within the Moosebar or Gething Formation. In this report the Bluesky is considered to be the basal member of the Moosebar Formation.

The Bluesky Member generally consists of interbedded mudstone, siltstone, and sandstone. Thin to medium individual sandstone and mudstone beds give some sections a banded appearance. The top of the Bluesky is marked by a distinctive glauconitic horizon. The glauconitic zone is up to 1.30 metres thick and is characterised by abundant fine bright green glauconite grains commonly in siltstone and less commonly in silty mudstone and argillaceous sandstone. Few millimetre thick coal lenses also occur in the glauconitic zone.
Siltstone, grading into silty mudstone or sandy siltstone in places, is the most common Bluesky lithology in the Hudette area. Mudstone facies as encountered in a southern hole (HUD13-02C) and sandstone facies as encountered in a northern hole (83-18) occur occasionally. Siltstone is generally medium grey to medium dark grey with occasional cross laminations and wavy bedding. Pyrite-filled vertical and horizontal burrows are common. Polished surfaces and sandstone lenses occur in places.

Mudstones are medium dark grey to dark grey and occasionally silty and carbonaceous. It includes horizontal and vertical pyrite-filled burrows, disseminated pyrite, and occasional bioturbated surfaces.

Sandstones are medium grey to light grey, very fine- to fine-grained, occasionally medium-grained and pebbly, and commonly well-sorted. Pyritised burrows are less common than in mudstone and siltstone facies. Trace glauconite was noted near the contact with the underlying Gething Formation.

The basal contact of Bluesky Member is characterised by chert and quartz pebble conglomerate up to a metre thick, to an argillaceous sandstone with a few random chert and quartz pebbles. However, the basal contact in Hudette region varies from pebbly sandstone to mudstone. Kilby (1983) suggested that for convenience, the top of Gething has generally been positioned at the top of the uppermost coal seam, although some of the overlying strata may also be non-marine Gething. At Hudette, the Bluesky / Gething boundary has therefore been drawn at the top of carbonaceous mudstone/siltstone or coal bed.

4.3.1.4 Environments of deposition

The Gething Formation is overlain by the Bluesky Member of the Moosebar Formation which was deposited by the Moosebar Sea. The advancement of the sea is thought to be in response to increased subsidence of the foreland basin and the rapid decrease in sediment supply. The Bluesky Member of the Moosebar Formation is considered to be the erosional remnant of deposits laid down by the advancing sea. A minor erosional unconformity may occur between the Gething and Moosebar Formations (Klatzel-Mudry et al., 1984).

The mudstone facies of the Moosebar Formation are interpreted as offshore deposits on the basis of trace fossils, similarity of mudstone facies deposit with other modern and ancient off shore deposits, and their stratigraphic position (Carmichael, 1983). The bioturbated member appears to be the equivalent of Carmichael’s ‘transition facies'. The transition facies is interpreted as forming in the transition zone between offshore and lower shoreface, on the basis of stratigraphic position and by comparison with other modern and ancient shoreline deposits (Carmichael, 1983). The same depositional environment is suggested for the Bioturbated Siltstone Member.

4.3.2 Gething Formation

The Gething Formation (McLearn, 1923) forms the top of Hughes’ (1964) Crassier Group. The formation is named for Gething Creek, a tributary of the Peace River, west of Hudson's Hope and nearby Gething Mountain. The age of the formation is Aptian to Early Albian (Gibson, 1992).

The Gething's thickness increases from about 75 metres (about 245 feet) near Smoky River to more than 550 metres (about 1,800 feet) at Peace River Canyon and is about 350
metres (about 1,150 feet) in the foothills to the north. Within the Falling Creek area, previous drilling and mapping has not encountered a complete section of the Gething Formation, although several natural-gas wells have intersected complete, albeit thrust-faulted, Gething sections. Klatzel-Mudry et al. (1984) compiled a composite Gething section approximately 450 metres thick, in the Falling Creek area.

During the current investigations of the Hudette property, almost every borehole (except HUD 12-30 and HUD12-05) intersected some section of the Gething Formation. However, a complete lithological section of the Gething Formation has not yet been established from this work, since none of the boreholes have drilled a complete sequence between Moosebar Formation and Dresser Formation. A number of Gething outcrops are exposed, particularly along Falling Creek Connector Road, but no continuous section from top to bottom was exposed.

The Gething Formation is largely a sequence of fining-upward cyclothems, typical of fluvial to deltaic depositional environments. The cyclic coal-bearing succession consists of a heterogeneous assemblage of rare conglomerate, coarse- to fine-grained sandstone, siltstone, mudstone, carbonaceous mudstone and coal. Coal seams developed in the culminating phase of many cycles.

Typical Gething Formation geophysical logs show intercalated lithologies of sandstone, mudstone, siltstone and coal. Fining-upward cyclothems are commonly easy to pick on these logs (Figure 4-3). The log response in underlying Dresser Formation is blockier than in the Gething Formation (Klatzel-Mudry et al., 1984), a useful criterion for differentiating the two formations.

The Dresser-Gething contact was intersected in a few air-rotary drill holes in southeastern corner of the investigated area. However, it was neither crossed in any core hole nor observed in the outcrops during current investigations. Hughes (1967) described the contact between Gething Formation and Dresser at the top of a 15 to 20 metre thick sequence of sandstone, grit, and conglomerate. The geophysical logs from the current investigation support this criterion, and the contact was therefore placed at the top of the thick arenaceous facies.

The Gething Formation within the Hudette study area is divisible into the Upper Gething and Lower Gething units on the basis of coal occurrences. However, these two units have not been separately mapped due to lack of sufficient data.

More than thirteen Gething coal seams (Table 5-1), within a true stratigraphic thickness averaging 151 metres, have been intersected by drilling at Hudette, where these coals may be correlated through several boreholes. Seven of these coals, designated from top down as A- Seam through G- Seam, commonly occur in the upper 85 metres (again, average true stratigraphic thickness). These coals appear to be thick, laterally consistent and are considered potentially-economic at this stage. The strata consisting of these seams are considered to comprise the Upper Gething Unit.

The sequence below G seam is included in the Lower Gething Formation. The coal seams in the Lower Gething Unit are generally thin to very thin, occasionally swelling to greater thicknesses, but are not considered economic at the present time. These lower coals are not correlatable at this stage of exploration, and have therefore not been named.
4.3.2.1 Upper Gething Unit

The strata from Bluesky-Gething contact to the floor of G-Beam is included in the Upper Gething Unit. The lithological sequence in upper coal zone described here is based on three continuous core logs, five spot coring logs from current drilling, one historical drill hole (83-18), limited outcrop data and interpretation of geophysical logs.

Sandstone and mudstone constitute the dominant lithology of the Upper Gething Unit, based on core study, log interpretation and outcrops. The percentages of these
lithologies vary in holes and any particular trend of these lithologies could not be concluded from the available data. Following is the description of major lithologies within the Upper Gething Unit.

4.3.2.1.1 Sandstone
Sandstone is light grey, medium grey, medium dark grey and brownish grey, and weathers orange brown to brownish grey in outcrops. It is moderately- to well-sorted and well indurated. The grains appear mostly quartz and chert, commonly subrounded to subangular, and exhibit salt-and-pepper texture in places. Mudstone and siltstone pebbles and laminae, and carbonaceous and coal lenses and laminae occur in places. Calcite (commonly) and pyrite (rarely) were recorded. Although the grain size ranges from very fine to very coarse (occasionally grading to pebbly sandstone), very fine- to fine-grained sandstones predominate. Coarser sizes are rare, usually occurring at the bottom of the fining-upward cyclothems. Parallel laminations, cross-laminations, coalified and carbonaceous plant debris, roots, bioturbation, burrows, soft-sediment deformation, flame structures, and rip-up clasts were noted in places. Polished surfaces and iron staining is common at several intervals. The upper and lower contacts of these sandstones vary from sharp to gradational.

4.3.2.1.2 Mudstone
The mudstone is medium grey to dark grey, silty to non silty, slightly carbonaceous to highly carbonaceous and locally grading to carbonaceous shale. A number of soft, light grey ash bands have been reported. Coal laminae, stringers, very thin beds, and coalified and carbonaceous plant debris are common to abundant. Rootlets, soft-sediment deformation, bioturbation, sandstone and siltstone lenses and very thin beds occur in places. Polished surfaces, calcite and rare pyrite were also noted.

4.3.2.1.3 Siltstone and pebbly sandstone
Quantitatively, siltstone and pebbly sandstone constitute the minor portion of the sequence in the core holes. Siltstones are medium grey and usually grade to sandstone or mudstone in the cycle. Carbonaceous and coalified plant fragments and burrows occur in places. Pebbly sandstone occurs at the base of the cycle and is generally coarse- to very coarse-grained with abundant chert pebbles, up to 5 millimetres in diameter.

4.3.2.1.4 Coal
Coals of A-Seam (near the top of the Upper Gething) down to G-Seam were deposited in the Upper Gething sequence. The extent, thickness and economic potential of these coal seams are described in detail in Section 5 of this report.

4.3.2.2 Lower Gething Unit
The Lower Gething in this report represents all the strata drilled below G-seam during the 2011-2013 drilling programme. The coring holes were not deep enough to intersect the complete section of the Lower Gething Unit. The lithological characteristics are somehow similar to Upper Gething Unit in cores; however it appears on wireline logs that percentage of sandy facies increases downward.

Numerous coal occurrences in the Lower Gething have been picked on density and neutron logs (Table 5-1), but they are too thin to be of economic interest. Some of the
seams locally thicken up to 3 metres but generally thin out or pinch out quickly. Although seam correlation in Lower Gething is generally reasonable, correlation of some of the coal zones has been difficult due to variable seam characteristics, absence of marker beds and lack of continuity. Additional data from future exploration programmes will improve the reliability of seam correlation.

The Lower Gething Unit comprises a sequence of sandstone, mudstone, siltstone and coal.

Sandstone are light to medium grey, argillaceous to clean, commonly fine- to very fine-grained, locally grading to medium- to very coarse-grained, moderately- to well-sorted and generally calcareous. Other locally developed features include laminations, cross lamination, burrows, bioturbation, rootlets, coal lenses, coal stringers, coalified plant debris, slumping and compaction structures and rip-up clasts.

Mudstones are medium grey to dark grey, locally carbonaceous and silty and calcareous to non-calcareous. Sandstone and siltstone laminations are common in some intervals. Laminations, coaly and carbonaceous stringers, coalified plant debris, and coal laminae occur in places. The contact with other lithologies is generally gradational. Nodular appearance, pyrite nodules and polished fragments and surfaces are occasional.

Siltstone is dark grey to black, commonly argillaceous and calcareous. Fine sand laminations, bioturbation, burrows, cross-lamination, parallel to ripple lamination, and coalified and carbonaceous plant debris occur locally.

Four coal seams along with a number of unidentified coal seams are identified in Lower Gething Unit. These seams generally appear uneconomic at this stage of exploration.

4.3.2.3 Environment of deposition

The Gething Formation is bounded by marine sediments of the Moosebar Formation at the top and delta plain facies of the Dresser Formation at the bottom. The tectonic and sedimentary processes of Gething Formation are thought to be analogous with a humid alluvial plain and delta plain facies model (Klatzel-Mudry et al., 1984). Different facies (channel sandstone, carbonaceous mudstone, coal etc.) within the formation can be interpreted as various components of a deltaic complex (Klatzel-Mudry et al., 1984).

The paleoenvironment and depositional history of the Gething Formation has also been described by Gibson (1992a). He concluded that the sedimentary facies, facies relationship, petrographic data, the presence of diagnostic sedimentary and biogenic structures, and the occurrence or absence of characteristic megafossils, microfossils and micro floral assemblage, suggest that most strata of the Gething Formation were deposited in a deltaic coastal plain, or paralic depositional environment.

4.3.3 Dresser Formation

The Dresser Formation underlies the Gething Formation. The type locality of the Dresser Formation has been described by Hughes (1964), from the west end of the Peace River Canyon. The formation boundaries in the Peace River Canyon are recognised in outcrops as well as in diamond drill cores. The thickness of the Dresser Formation in the Peace River area ranges 370 metres in the west to 200 metres in the east (Hughes, 1964). The average thickness
in the Falling Creek area is reported to be 350 metres (Klatzel-Mudry et al., 1984). The formation has been identified on geophysical logs run in few holes in the southeastern portion of the current exploration area, but none of the coring holes reached the depth of Dresser Formation. The maximum apparent thickness of 170 metres was drilled in HUD12-18. The following figure shows the gamma and neutron log response in Dresser Formation.

![Gamma and Neutron Log Response of Dresser Formation](image)

Figure 4-4: Neutron and Gamma log response of Dresser Formation (borehole HUD12-18)

The Dresser Formation as described from neighbouring areas (Sultan and Cathyl-Huhn, 2014, Klatzel-Mudry et al., 1984) consists of interbedded mudstone, siltstone, sandstone, grits, conglomerates and coal. The mudstone and siltstone generally form the minor component of Dresser Formation. The sandstones are commonly very coarse- to medium-grained but range from very fine- to very coarse-grained. The grains are mostly quartz and chert and beds are medium to very thick. Both tabular and trough crossbedding was noted. The conglomerate units are thick and comprised of 3 millimetre to 10 centimetre, subrounded to rounded chert and quartz pebbles. The upper contact with Gething Formation is transitional and is placed at the top of the 15 to 20 metres thick sequence of sandstone, gritstone and conglomerates. The lower contact is placed on the last coarse-grained sandstone. Both contacts are conformable.

The formation was deposited in distal alluvial fan and braided stream (predominantly channel) environments.
4.4 Regional structural setting

The present-day Rocky Mountains are the most visible manifestation of Columbian and Laramide overthrusting, which gradually proceeded northeastward, with successively-younger thrusts tending to break through the Foreland rocks at successively-deeper stratigraphic levels. As successively-younger thrusts developed, they generated passive folding within overlying, previously-deformed rocks. Overlying, older thrusts were therefore passively folded along with their adjoining strata.

From southwest to northeast, the Cordilleran fold-thrust belt gradually changes structural styles (Thompson, 1979) from a thrust-dominant regime(within the mostly-Palaeozoic carbonate-clastic rocks of the Rocky Mountain Main Ranges and Front Ranges) to a mixed fold-thrust regime (within the Inner Foothills, including the Hudette property) to a gently-folded frontal regime (within the Outer Foothills, ten or more kilometres to the northeast of Hudette).

4.5 Local structure

Structural geology of the Hudette area would be difficult to decipher on the sole basis of bedding attitudes within exposed bedrock, owing to the pervasive Drift cover over the area, and the concomitant paucity of outcrops. Much of our understanding of local structural geology comes from borehole intersections of coal-measures and associated younger non-coal-bearing rocks, supplemented by exposures of bedrock along exploration trails and within the locally-substantial rock-cuts bounding the Falling Creek Connector Road (the FCCR).

Regional geological mapping within the broader Falling Creek exploration area indicate (Klatzel-Mudry et al., 1984) that the Hudette exploration area is bounded on the northeast and southwest by faults that continue many kilometres to the northwest and southeast, consistent with the general strike in the area. These faults are marked F-1 and F-2 on Map 2-4. The F-1 fault dips to the southwest whereas the F-2 fault dips to the northeast.

The Hudette property and environs are characterised by intense faulting and associated folding (Map 2-4). Thrust faults are the most common structural feature in the property. Low angle thrust faults responsible for stratigraphic over-thickening have been interpreted in a number of drill holes.

A number of faults extending throughout the property are well-defined from borehole data. Two of these faults occur along the northern and southern boundaries of the exploration area. These faults dip northeast in the southern portion and southwest in the northern portion. The southernmost fault recognised during the current exploration programme in drill holes HUD13-07 and HUD12-01 appears to be in the vicinity of the fault F-2. In this fault, the Gething Formation is repeated above the Moosebar Formation in HUD13-07. The fault along the northern boundary of the exploration area was recognised in drill holes HUD12-31 and HUD12-24. This fault is located in the south of fault F-1.

Although faulting is the dominant structural element, very tight folding is commonly associated with these thrust faults. A major syncline runs approximately in the centre of the investigated area.

The structural features are shown in Map 2-4.
5 Coal

The Gething Formation contains several coal zones of potentially-economic importance within the Hudette property. Since the exploration activities in Hudette property between years-2011 through 2013 were confined to the northern portion of the property, the following discussion is based on the results obtained from these investigations.

Thirteen coal seams were identified on downhole geophysical logs and in cores. These thirteen coal seams were designated from youngest (stratigraphically-highest) to oldest (stratigraphically-lowest) as A, B, C, D, E, E1, F, F1, G, H, I, J, and K. Most of these coals comprise more than one ply, separated by rock partings. A-Seam and I-seam are thin, but are used as datum for coal seam correlation. E1 and F1 are only locally developed. Several coals below K-Seam were intersected in a few boreholes, but they are thin and probably not of immediate economic interest. Table 5-1, given below, presents Drift thickness, coal seam thickness, interseam intervals, and presence of the Moosebar Formation and the Bluesky Member in the current boreholes drilled at Hudette.

Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m) Drilled</th>
<th>True</th>
<th>Seam</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD11-01</td>
<td>0</td>
<td>4.87</td>
<td></td>
<td>4.87</td>
<td></td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD11-01</td>
<td>38.40</td>
<td>39.57</td>
<td>1.17</td>
<td>1.08</td>
<td>B</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-01</td>
<td>39.57</td>
<td>40.36</td>
<td>0.79</td>
<td>0.73</td>
<td>B-P</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-01</td>
<td>40.36</td>
<td>41.04</td>
<td>0.68</td>
<td>0.63</td>
<td>B</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-01</td>
<td>41.04</td>
<td>41.68</td>
<td>0.64</td>
<td>0.59</td>
<td>B-P</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-01</td>
<td>41.68</td>
<td>43.13</td>
<td>1.45</td>
<td>1.34</td>
<td>B</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-01</td>
<td>46.12</td>
<td>49.59</td>
<td>3.47</td>
<td>3.42</td>
<td>C</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-01</td>
<td>49.59</td>
<td>50.83</td>
<td>1.24</td>
<td>1.22</td>
<td>C-P</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-01</td>
<td>50.83</td>
<td>51.40</td>
<td>0.57</td>
<td>0.56</td>
<td>C</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>HUD11-01</td>
<td>60.95</td>
<td>61.92</td>
<td>0.97</td>
<td>0.96</td>
<td>D</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-01</td>
<td>61.92</td>
<td>62.27</td>
<td>0.35</td>
<td>0.34</td>
<td>D-P</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-01</td>
<td>62.27</td>
<td>62.70</td>
<td>0.43</td>
<td>0.42</td>
<td>D</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-01</td>
<td>62.70</td>
<td>63.81</td>
<td>1.11</td>
<td>1.09</td>
<td>D-P</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-01</td>
<td>63.81</td>
<td>64.03</td>
<td>0.22</td>
<td>0.22</td>
<td>D</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>HUD11-01</td>
<td>90.66</td>
<td>90.93</td>
<td>0.27</td>
<td>0.27</td>
<td>E</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-01</td>
<td>90.93</td>
<td>93.18</td>
<td>2.25</td>
<td>2.22</td>
<td>E-P</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-01</td>
<td>93.18</td>
<td>94.65</td>
<td>1.47</td>
<td>1.45</td>
<td>E</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-01</td>
<td>107.39</td>
<td>107.88</td>
<td>0.49</td>
<td>0.48</td>
<td>F</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-01</td>
<td>107.88</td>
<td>109.22</td>
<td>1.34</td>
<td>1.32</td>
<td>F-P</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-01</td>
<td>109.22</td>
<td>111.38</td>
<td>2.16</td>
<td>2.14</td>
<td>F</td>
<td>Coal</td>
<td></td>
</tr>
</tbody>
</table>
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seams</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD11-01</td>
<td>131.47</td>
<td>133.14</td>
<td>1.67</td>
<td>1.65</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD11-01</td>
<td>141.91</td>
<td>142.33</td>
<td>0.42</td>
<td>0.42</td>
<td>H</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>0</td>
<td>4.9</td>
<td>4.9</td>
<td></td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD11-02</td>
<td>11.32</td>
<td>13.88</td>
<td>2.56</td>
<td>2.41</td>
<td>B</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>15.85</td>
<td>16.53</td>
<td>0.68</td>
<td>0.64</td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>16.53</td>
<td>17.03</td>
<td>0.50</td>
<td>0.47</td>
<td>C-PT</td>
<td></td>
</tr>
<tr>
<td>HUD11-02</td>
<td>17.03</td>
<td>18.41</td>
<td>1.38</td>
<td>1.30</td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>20.04</td>
<td>22.15</td>
<td>2.11</td>
<td>1.97</td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>22.15</td>
<td>23.25</td>
<td>1.10</td>
<td>1.03</td>
<td>D-PT</td>
<td></td>
</tr>
<tr>
<td>HUD11-02</td>
<td>23.25</td>
<td>23.78</td>
<td>0.53</td>
<td>0.49</td>
<td>D</td>
<td>CR</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>49.71</td>
<td>49.90</td>
<td>0.19</td>
<td>0.18</td>
<td>E</td>
<td>CR</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>49.90</td>
<td>52.00</td>
<td>2.1</td>
<td>1.96</td>
<td>E-PT</td>
<td></td>
</tr>
<tr>
<td>HUD11-02</td>
<td>52.00</td>
<td>52.85</td>
<td>0.85</td>
<td>0.81</td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>70.12</td>
<td>70.34</td>
<td>0.22</td>
<td>0.21</td>
<td>F</td>
<td>CR</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>70.34</td>
<td>71.90</td>
<td>1.56</td>
<td>1.46</td>
<td>F-PT</td>
<td></td>
</tr>
<tr>
<td>HUD11-02</td>
<td>71.90</td>
<td>74.40</td>
<td>2.50</td>
<td>2.33</td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>88.09</td>
<td>88.48</td>
<td>0.39</td>
<td>0.38</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>88.48</td>
<td>89.21</td>
<td>0.73</td>
<td>0.71</td>
<td>G</td>
<td>CR</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>89.21</td>
<td>89.72</td>
<td>0.51</td>
<td>0.49</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>95.93</td>
<td>96.39</td>
<td>0.46</td>
<td>0.45</td>
<td>H</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>108.64</td>
<td>108.90</td>
<td>0.26</td>
<td>0.25</td>
<td>I</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>127.95</td>
<td>128.87</td>
<td>0.92</td>
<td>0.90</td>
<td>J</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>180.20</td>
<td>180.68</td>
<td>0.48</td>
<td>0.47</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-02</td>
<td>191.25</td>
<td>191.35</td>
<td>0.10</td>
<td>0.10</td>
<td>Coal</td>
<td>CR</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>204.88</td>
<td>205.19</td>
<td>0.31</td>
<td>0.30</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-02</td>
<td>209.27</td>
<td>209.64</td>
<td>0.37</td>
<td>0.36</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-02</td>
<td>212.16</td>
<td>212.43</td>
<td>0.27</td>
<td>0.26</td>
<td>Coal</td>
<td>CR</td>
</tr>
<tr>
<td>HUD11-03</td>
<td>0</td>
<td>13.57</td>
<td>13.57</td>
<td></td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>13.57</td>
<td>50.5</td>
<td>36.93</td>
<td></td>
<td>Moosebar</td>
<td></td>
</tr>
</tbody>
</table>

No dip data, but same location as HUD13-01C, dip data from core in HUD13-01C.
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drilled</td>
<td>True</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>50.5</td>
<td>61.56</td>
<td>11.06</td>
<td></td>
<td>Bluesky</td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>61.56</td>
<td>61.88</td>
<td>0.32</td>
<td>A</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>96.08</td>
<td>98.39</td>
<td>2.31</td>
<td>B</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>98.39</td>
<td>98.77</td>
<td>0.38</td>
<td>B</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>107.71</td>
<td>108.66</td>
<td>0.95</td>
<td>C</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>108.66</td>
<td>109.22</td>
<td>0.56</td>
<td>C-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>109.22</td>
<td>111.10</td>
<td>1.88</td>
<td>C</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>111.10</td>
<td>115.52</td>
<td>4.42</td>
<td>C-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>115.52</td>
<td>117.59</td>
<td>2.07</td>
<td>C</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>117.59</td>
<td>118.10</td>
<td>0.51</td>
<td>C-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>118.10</td>
<td>119.26</td>
<td>0.45</td>
<td>C-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>119.26</td>
<td>119.88</td>
<td>0.62</td>
<td>C</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>122.45</td>
<td>124.07</td>
<td>1.62</td>
<td>D</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>124.07</td>
<td>124.20</td>
<td>0.13</td>
<td>D-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>124.20</td>
<td>125.00</td>
<td>0.80</td>
<td>D</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>125.00</td>
<td>126.61</td>
<td>1.61</td>
<td>D-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>126.61</td>
<td>127.02</td>
<td>0.41</td>
<td>D</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>136.68</td>
<td>136.86</td>
<td>0.18</td>
<td>Coal</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>153.80</td>
<td>154.36</td>
<td>0.56</td>
<td>E</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>154.36</td>
<td>156.03</td>
<td>1.67</td>
<td>E-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>156.03</td>
<td>157.91</td>
<td>1.88</td>
<td>E</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>163.49</td>
<td>163.84</td>
<td>0.35</td>
<td>F</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>163.84</td>
<td>165.42</td>
<td>1.58</td>
<td>F-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>165.42</td>
<td>165.63</td>
<td>0.21</td>
<td>F</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>165.63</td>
<td>167.35</td>
<td>1.72</td>
<td>F-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>167.35</td>
<td>169.27</td>
<td>1.92</td>
<td>F</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>0</td>
<td>4.9</td>
<td>4.9</td>
<td></td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>68.47</td>
<td>70.95</td>
<td>2.48</td>
<td>B</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>75.90</td>
<td>76.44</td>
<td>0.54</td>
<td>C</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>76.44</td>
<td>76.93</td>
<td>0.49</td>
<td>C-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>76.93</td>
<td>77.98</td>
<td>1.05</td>
<td>C</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>81.10</td>
<td>81.96</td>
<td>0.86</td>
<td>D</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>81.96</td>
<td>82.17</td>
<td>0.21</td>
<td>D-PT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No dip data, HUD13-08 is closest hole with dipmeter log.
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drilled</td>
<td>True</td>
</tr>
<tr>
<td>HUD11-04</td>
<td>82.17</td>
<td>82.70</td>
<td>0.53</td>
<td>D</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>82.70</td>
<td>83.78</td>
<td>1.08</td>
<td>D-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>83.78</td>
<td>84.06</td>
<td>0.28</td>
<td>D</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>103.71</td>
<td>104.42</td>
<td>0.71</td>
<td>E</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>104.42</td>
<td>106.31</td>
<td>1.89</td>
<td>E-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>106.31</td>
<td>107.80</td>
<td>1.49</td>
<td>E</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>110.91</td>
<td>111.10</td>
<td>0.19</td>
<td>Coal</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>113.39</td>
<td>114.03</td>
<td>0.64</td>
<td>F</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>114.03</td>
<td>116.04</td>
<td>2.01</td>
<td>F-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>116.04</td>
<td>118.50</td>
<td>2.46</td>
<td>F</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>141.96</td>
<td>142.30</td>
<td>0.34</td>
<td>G</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>142.30</td>
<td>142.83</td>
<td>0.53</td>
<td>G-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>142.83</td>
<td>143.71</td>
<td>0.88</td>
<td>G</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>157.09</td>
<td>157.76</td>
<td>0.67</td>
<td>H</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>0</td>
<td>16.46</td>
<td>16.46</td>
<td>Drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>31.32</td>
<td>33.24</td>
<td>1.92</td>
<td>B</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>59.03</td>
<td>59.97</td>
<td>0.94</td>
<td>C</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>63.84</td>
<td>65.63</td>
<td>1.79</td>
<td>D</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>78.61</td>
<td>79.28</td>
<td>0.67</td>
<td>E</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>79.28</td>
<td>81.47</td>
<td>2.19</td>
<td>E-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>81.47</td>
<td>83.23</td>
<td>1.76</td>
<td>E</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>87.12</td>
<td>87.33</td>
<td>0.21</td>
<td>Coal</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>90.11</td>
<td>92.08</td>
<td>1.97</td>
<td>F</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>107.66</td>
<td>107.88</td>
<td>0.22</td>
<td>F1</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>107.88</td>
<td>108.81</td>
<td>0.93</td>
<td>F1-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>108.81</td>
<td>109.40</td>
<td>0.59</td>
<td>F1</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>109.40</td>
<td>113.86</td>
<td>4.46</td>
<td>F1-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>113.86</td>
<td>114.15</td>
<td>0.29</td>
<td>F1</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>120.96</td>
<td>121.27</td>
<td>0.31</td>
<td>G</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>121.27</td>
<td>121.48</td>
<td>0.21</td>
<td>G-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>121.48</td>
<td>122.03</td>
<td>0.55</td>
<td>G</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>138.37</td>
<td>139.23</td>
<td>0.86</td>
<td>H</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-06</td>
<td>0</td>
<td>4.57</td>
<td>4.57</td>
<td>Drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-06</td>
<td>17.82</td>
<td>20.20</td>
<td>2.38</td>
<td>B</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-06</td>
<td>21.51</td>
<td>22.21</td>
<td>0.70</td>
<td>C</td>
<td>CR</td>
<td></td>
</tr>
</tbody>
</table>

No dip data.
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD11-06</td>
<td>22.21</td>
<td>23.74</td>
<td>1.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-06</td>
<td>23.74</td>
<td>24.25</td>
<td>0.51</td>
<td>C</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>HUD11-06</td>
<td>24.25</td>
<td>24.84</td>
<td>0.59</td>
<td>C</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-06</td>
<td>24.84</td>
<td>25.40</td>
<td>0.56</td>
<td>C-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-06</td>
<td>25.40</td>
<td>26.64</td>
<td>1.24</td>
<td>C</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-06</td>
<td>26.64</td>
<td>27.08</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-06</td>
<td>28.46</td>
<td>30.08</td>
<td>1.62</td>
<td>D</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-06</td>
<td>30.08</td>
<td>30.16</td>
<td>0.08</td>
<td>D-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-06</td>
<td>30.16</td>
<td>30.67</td>
<td>0.51</td>
<td>D</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-06</td>
<td>52.50</td>
<td>54.48</td>
<td>1.98</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>0.00</td>
<td>26.92</td>
<td>18.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>26.92</td>
<td>45</td>
<td>18.05</td>
<td>C</td>
<td></td>
<td>Bluesky</td>
</tr>
<tr>
<td>HUD11-07</td>
<td>45.26</td>
<td>45.45</td>
<td>0.19</td>
<td>A</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>74.60</td>
<td>76.67</td>
<td>2.07</td>
<td>B</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>78.44</td>
<td>78.69</td>
<td>0.23</td>
<td>C</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>78.90</td>
<td>79.59</td>
<td>0.65</td>
<td>C</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>79.59</td>
<td>80.12</td>
<td>0.50</td>
<td>CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>80.12</td>
<td>81.29</td>
<td>1.10</td>
<td>C</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>83.05</td>
<td>85.50</td>
<td>2.22</td>
<td>D</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>83.05</td>
<td>85.50</td>
<td>2.22</td>
<td>D</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>112.69</td>
<td>112.87</td>
<td>0.18</td>
<td>E</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>112.87</td>
<td>114.09</td>
<td>1.06</td>
<td>E-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>114.09</td>
<td>115.28</td>
<td>1.03</td>
<td>E</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>133.33</td>
<td>133.64</td>
<td>0.27</td>
<td>F</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>133.64</td>
<td>134.18</td>
<td>0.47</td>
<td>FP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>134.18</td>
<td>135.82</td>
<td>1.42</td>
<td>F</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>148.45</td>
<td>150.72</td>
<td>2.26</td>
<td>B</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>150.72</td>
<td>151.16</td>
<td>0.44</td>
<td>B-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>151.16</td>
<td>151.46</td>
<td>0.30</td>
<td>B</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>152.11</td>
<td>155.67</td>
<td>2.70</td>
<td>C</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>155.67</td>
<td>158.57</td>
<td>2.20</td>
<td>D</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>167.19</td>
<td>170.83</td>
<td>3.42</td>
<td>F</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>179.42</td>
<td>181.13</td>
<td>1.61</td>
<td>G</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>187.48</td>
<td>187.89</td>
<td>0.39</td>
<td>H</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>201.98</td>
<td>202.13</td>
<td>0.14</td>
<td>I</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>223.68</td>
<td>224.54</td>
<td>0.83</td>
<td>J</td>
<td>Coal</td>
<td></td>
</tr>
</tbody>
</table>

Dip data from dipmeter, repeated from B to C seams, C and D seams at 152.11m have no parting, thickness matched with overlying C and D.

53
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Sealed</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drilled</td>
<td>True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>0</td>
<td>19.82</td>
<td>19.82</td>
<td>Drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>19.82</td>
<td>41.88</td>
<td>22.06 16.90</td>
<td>Bluesky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>41.88</td>
<td>42.13</td>
<td>0.25 0.23</td>
<td>A CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>72.86</td>
<td>74.98</td>
<td>2.12 1.92</td>
<td>B Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>78.98</td>
<td>79.20</td>
<td>0.22 0.22</td>
<td>C CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>79.20</td>
<td>79.69</td>
<td>0.49 0.47</td>
<td>C-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>79.69</td>
<td>80.39</td>
<td>0.70 0.68</td>
<td>C Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>80.39</td>
<td>80.93</td>
<td>0.54 0.52</td>
<td>C-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>80.93</td>
<td>82.42</td>
<td>1.49 1.44</td>
<td>C Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>84.90</td>
<td>87.51</td>
<td>2.61 2.48</td>
<td>D Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>121.49</td>
<td>122.34</td>
<td>0.85 0.80</td>
<td>E CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>122.34</td>
<td>123.23</td>
<td>0.89 0.86</td>
<td>E-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>123.23</td>
<td>124.64</td>
<td>1.41 1.36</td>
<td>E Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>141.69</td>
<td>144.14</td>
<td>2.45 2.41</td>
<td>F Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>154.07</td>
<td>154.63</td>
<td>0.56 0.54</td>
<td>G Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>154.63</td>
<td>155.08</td>
<td>0.45 0.43</td>
<td>G CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>155.08</td>
<td>155.90</td>
<td>0.82 0.79</td>
<td>G Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>161.95</td>
<td>162.58</td>
<td>0.63 0.61</td>
<td>H Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>172.81</td>
<td>173.20</td>
<td>0.39 0.38</td>
<td>I HCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-08</td>
<td>193.51</td>
<td>194.00</td>
<td>0.49 0.48</td>
<td>J Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>0</td>
<td>13.71</td>
<td>13.71</td>
<td>Drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>22.92</td>
<td>23.28</td>
<td>0.36</td>
<td>D Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>23.28</td>
<td>23.58</td>
<td>0.30</td>
<td>D-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>23.58</td>
<td>23.83</td>
<td>0.25</td>
<td>D Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>23.83</td>
<td>24.15</td>
<td>0.32</td>
<td>D-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>24.15</td>
<td>24.59</td>
<td>0.44</td>
<td>D Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>25.44</td>
<td>25.62</td>
<td>0.18</td>
<td>Coal</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>26.33</td>
<td>26.61</td>
<td>0.28</td>
<td>Coal</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>31.14</td>
<td>31.35</td>
<td>0.21</td>
<td>Coal</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>32.33</td>
<td>32.68</td>
<td>0.35</td>
<td>E1 Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>32.68</td>
<td>33.03</td>
<td>0.35</td>
<td>E1-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>33.03</td>
<td>33.25</td>
<td>0.22</td>
<td>E1 Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>33.25</td>
<td>37.31</td>
<td>4.06</td>
<td>E1-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>37.31</td>
<td>39.28</td>
<td>1.97</td>
<td>E1 Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>40.10</td>
<td>40.49</td>
<td>0.39</td>
<td>E Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borehole</td>
<td>From (m)</td>
<td>To (m)</td>
<td>Thickness (m)</td>
<td>Seam</td>
<td>Lithology/Fm/Member</td>
<td>Remarks</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>---------------</td>
<td>------</td>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Drilled</td>
<td>True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>40.49</td>
<td>40.88</td>
<td>0.39</td>
<td>E-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>40.88</td>
<td>42.23</td>
<td>1.35</td>
<td>E</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>43.40</td>
<td>43.77</td>
<td>0.37</td>
<td>Coal</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>47.69</td>
<td>49.52</td>
<td>1.83</td>
<td>F</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>67.78</td>
<td>68.51</td>
<td>0.73</td>
<td>G</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>93.22</td>
<td>95.04</td>
<td>1.82</td>
<td>H</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>97.08</td>
<td>98.6</td>
<td>1.52</td>
<td>H-REP</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>124.28</td>
<td>124.99</td>
<td>0.71</td>
<td>J</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD11-09</td>
<td>124.28</td>
<td>6.09</td>
<td>6.09</td>
<td>OB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>39.54</td>
<td>40</td>
<td>0.46</td>
<td>B</td>
<td>CR</td>
<td>Dip data from core</td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>40.00</td>
<td>41.83</td>
<td>1.83</td>
<td>1.70</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>41.83</td>
<td>42.39</td>
<td>0.56</td>
<td>0.52</td>
<td>B-PT</td>
<td></td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>42.39</td>
<td>44.41</td>
<td>2.02</td>
<td>1.87</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>48.60</td>
<td>50.68</td>
<td>2.08</td>
<td>2.05</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>61.21</td>
<td>61.70</td>
<td>0.49</td>
<td>0.48</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>87.80</td>
<td>88.06</td>
<td>0.26</td>
<td>0.26</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>88.06</td>
<td>89.68</td>
<td>1.62</td>
<td>1.60</td>
<td>E-PT</td>
<td></td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>89.68</td>
<td>91.57</td>
<td>1.89</td>
<td>1.86</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>100.97</td>
<td>101.29</td>
<td>0.32</td>
<td>0.32</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>101.29</td>
<td>104.55</td>
<td>3.26</td>
<td>3.19</td>
<td>F-PT</td>
<td></td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>104.55</td>
<td>106.52</td>
<td>1.97</td>
<td>1.94</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>0.00</td>
<td>21.33</td>
<td>21.33</td>
<td></td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>0.00</td>
<td>21.33</td>
<td>21.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>21.33</td>
<td>44.50</td>
<td>23.17</td>
<td>23.17</td>
<td>Bluesky</td>
<td></td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>44.50</td>
<td>44.70</td>
<td>0.2</td>
<td>0.20</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>73.51</td>
<td>75.55</td>
<td>2.04</td>
<td>2.04</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>76.72</td>
<td>77.10</td>
<td>0.38</td>
<td>0.36</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>76.72</td>
<td>78.00</td>
<td>1.28</td>
<td>1.20</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>76.72</td>
<td>78.45</td>
<td>0.45</td>
<td>0.42</td>
<td>C-PT</td>
<td></td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>78.00</td>
<td>79.78</td>
<td>1.33</td>
<td>1.25</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>81.78</td>
<td>83.52</td>
<td>1.74</td>
<td>1.58</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>109.52</td>
<td>109.70</td>
<td>0.18</td>
<td>0.16</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>109.70</td>
<td>111.05</td>
<td>1.35</td>
<td>1.17</td>
<td>E-PT</td>
<td></td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>111.05</td>
<td>112.27</td>
<td>1.22</td>
<td>1.06</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>130.20</td>
<td>133.51</td>
<td>3.31</td>
<td>2.87</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>134.07</td>
<td>139.50</td>
<td>5.43</td>
<td>5.41</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Borehole</td>
<td>From (m)</td>
<td>To (m)</td>
<td>Thickness (m)</td>
<td>Seam</td>
<td>Lithology/ Fm/Member</td>
<td>Remarks</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------</td>
<td>---------------</td>
<td>------</td>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>139.50</td>
<td>144.00</td>
<td>4.5</td>
<td>3.45</td>
<td>C+D</td>
<td></td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>144.00</td>
<td>147.24</td>
<td>3.24</td>
<td>3.04</td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>154.00</td>
<td>155.05</td>
<td>1.05</td>
<td>0.99</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-01</td>
<td>0.00</td>
<td>18.29</td>
<td>18.29</td>
<td>Drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>18.29</td>
<td>90.00</td>
<td>71.71</td>
<td>Moosebar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>90.00</td>
<td>116.20</td>
<td>26.2</td>
<td>Bluesky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>116.20</td>
<td>117.00</td>
<td>0.8</td>
<td>A</td>
<td>C.Sh</td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>154.00</td>
<td>156.90</td>
<td>2.9</td>
<td>B</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>157.90</td>
<td>158.50</td>
<td>0.6</td>
<td>C</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>158.50</td>
<td>158.90</td>
<td>0.4</td>
<td>C-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>158.90</td>
<td>160.30</td>
<td>1.4</td>
<td>C</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>162.40</td>
<td>164.50</td>
<td>2.1</td>
<td>D</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>164.50</td>
<td>165.30</td>
<td>0.8</td>
<td>D-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>165.30</td>
<td>165.80</td>
<td>0.5</td>
<td>D</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>206.00</td>
<td>206.20</td>
<td>0.2</td>
<td>COAL</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>53.50</td>
<td>54.10</td>
<td>0.6</td>
<td>E</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>54.10</td>
<td>55.60</td>
<td>1.5</td>
<td>E-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>55.60</td>
<td>56.20</td>
<td>0.6</td>
<td>E</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>102.10</td>
<td>104.80</td>
<td>2.7</td>
<td>F</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>107.10</td>
<td>107.85</td>
<td>0.75</td>
<td>G</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>107.85</td>
<td>108.30</td>
<td>0.45</td>
<td>G-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>108.30</td>
<td>109.20</td>
<td>0.9</td>
<td>G</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>123.10</td>
<td>123.70</td>
<td>0.6</td>
<td>H</td>
<td>COAL</td>
<td></td>
</tr>
</tbody>
</table>
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD12-02</td>
<td>139.20</td>
<td>139.50</td>
<td>0.3</td>
<td>I</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-02</td>
<td>150.60</td>
<td>151.70</td>
<td>1.1</td>
<td>J</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-02</td>
<td>156.80</td>
<td>157.20</td>
<td>0.4</td>
<td>Coal</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-03</td>
<td>0.00</td>
<td>24.33</td>
<td>24.33</td>
<td></td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD12-03</td>
<td>24.33</td>
<td>36.80</td>
<td>12.47</td>
<td></td>
<td>Bluesky</td>
<td>Dip data from dipmeter</td>
</tr>
<tr>
<td>HUD12-03</td>
<td>36.80</td>
<td>37.00</td>
<td>0.2</td>
<td>A</td>
<td>C.Sh</td>
<td></td>
</tr>
<tr>
<td>HUD12-03</td>
<td>73.40</td>
<td>74.50</td>
<td>1.1</td>
<td>B</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-03</td>
<td>76.00</td>
<td>76.50</td>
<td>0.5</td>
<td>C</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-03</td>
<td>76.50</td>
<td>77.10</td>
<td>0.6</td>
<td></td>
<td></td>
<td>Dip data from dipmeter</td>
</tr>
<tr>
<td>HUD12-03</td>
<td>77.10</td>
<td>78.50</td>
<td>1.4</td>
<td>C</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-03</td>
<td>79.80</td>
<td>82.10</td>
<td>2.3</td>
<td>D</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-03</td>
<td>97.75</td>
<td>99.00</td>
<td>1.25</td>
<td>E</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-03</td>
<td>133.40</td>
<td>134.00</td>
<td>0.6</td>
<td></td>
<td>Coal</td>
<td>Dip data from dipmeter</td>
</tr>
<tr>
<td>HUD12-03</td>
<td>151.60</td>
<td>155.30</td>
<td>3.7</td>
<td>F</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-03</td>
<td>161.00</td>
<td>161.90</td>
<td>0.9</td>
<td>G</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-03</td>
<td>161.90</td>
<td>162.10</td>
<td>0.2</td>
<td></td>
<td>G</td>
<td>CR</td>
</tr>
<tr>
<td>HUD12-03</td>
<td>162.10</td>
<td>163.30</td>
<td>1.2</td>
<td></td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>HUD12-03</td>
<td>169.70</td>
<td>170.30</td>
<td>0.6</td>
<td></td>
<td>H</td>
<td>Dip data from dipmeter</td>
</tr>
<tr>
<td>HUD12-03</td>
<td>184.60</td>
<td>184.90</td>
<td>0.3</td>
<td>I</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-03</td>
<td>203.10</td>
<td>203.90</td>
<td>0.8</td>
<td>J</td>
<td>COAL</td>
<td></td>
</tr>
<tr>
<td>HUD12-03</td>
<td>205.90</td>
<td>206.00</td>
<td>0.1</td>
<td></td>
<td></td>
<td>Dip data from dipmeter</td>
</tr>
<tr>
<td>HUD12-04</td>
<td>0.00</td>
<td>33.52</td>
<td>33.52</td>
<td></td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD12-04</td>
<td>79.50</td>
<td>80.00</td>
<td>0.5</td>
<td></td>
<td>A</td>
<td>only neutron log through rods, coal picks approximate, dipmeter for upper 85m, few dip readings.</td>
</tr>
<tr>
<td>HUD12-04</td>
<td>136.50</td>
<td>139.00</td>
<td>2.5</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>HUD12-04</td>
<td>146.00</td>
<td>148.00</td>
<td>2</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>HUD12-04</td>
<td>157.00</td>
<td>159.00</td>
<td>2</td>
<td></td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>HUD12-04</td>
<td>171.50</td>
<td>172.00</td>
<td>0.5</td>
<td></td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>HUD12-04</td>
<td>186.00</td>
<td>187.70</td>
<td>1.7</td>
<td></td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>HUD12-04</td>
<td>194.00</td>
<td>197.00</td>
<td>3</td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>HUD12-04</td>
<td>207.00</td>
<td>209.00</td>
<td>2</td>
<td></td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-05</td>
<td>0.00</td>
<td>4.57</td>
<td>4.57</td>
<td></td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD12-05</td>
<td>4.57</td>
<td>33.00</td>
<td>28.43</td>
<td></td>
<td>Moosebar</td>
<td></td>
</tr>
<tr>
<td>HUD12-05</td>
<td>33.00</td>
<td>54.00</td>
<td>21</td>
<td></td>
<td>Moosebar</td>
<td></td>
</tr>
<tr>
<td>HUD12-05</td>
<td>54.00</td>
<td>124.96</td>
<td>70.96</td>
<td></td>
<td>Moosebar</td>
<td></td>
</tr>
</tbody>
</table>
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-06</td>
<td>0.00</td>
<td>9.14</td>
<td>9.14</td>
<td>Drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-06</td>
<td>12.70</td>
<td>14.80</td>
<td>2.1</td>
<td>2.09</td>
<td>A</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-06</td>
<td>15.00</td>
<td>15.60</td>
<td>0.6</td>
<td>0.60</td>
<td>Coal</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-06</td>
<td>66.90</td>
<td>67.10</td>
<td>0.2</td>
<td>0.20</td>
<td>Coal</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-06</td>
<td>71.20</td>
<td>71.60</td>
<td>0.4</td>
<td>0.40</td>
<td>E</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-06</td>
<td>71.60</td>
<td>72.30</td>
<td>0.7</td>
<td>0.70</td>
<td>E-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-06</td>
<td>72.30</td>
<td>77.00</td>
<td>4.7</td>
<td>4.63</td>
<td>E</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-06</td>
<td>98.80</td>
<td>104.40</td>
<td>5.6</td>
<td>3.60</td>
<td>F</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-07</td>
<td>0.00</td>
<td>12.19</td>
<td>12.19</td>
<td>Drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-07</td>
<td>12.19</td>
<td>35.50</td>
<td>23.31</td>
<td>22.52</td>
<td>Moosebar</td>
<td></td>
</tr>
<tr>
<td>HUD12-07</td>
<td>35.50</td>
<td>58.50</td>
<td>23</td>
<td>22.22</td>
<td>Bluesky</td>
<td></td>
</tr>
<tr>
<td>HUD12-07</td>
<td>58.50</td>
<td>58.80</td>
<td>0.3</td>
<td>0.29</td>
<td>A</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-07</td>
<td>83.60</td>
<td>85.60</td>
<td>2</td>
<td>1.93</td>
<td>B</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-07</td>
<td>89.90</td>
<td>90.50</td>
<td>0.6</td>
<td>0.58</td>
<td>C</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-07</td>
<td>90.50</td>
<td>91.00</td>
<td>0.5</td>
<td>0.48</td>
<td>C-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-07</td>
<td>91.00</td>
<td>92.25</td>
<td>1.25</td>
<td>1.21</td>
<td>C</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-07</td>
<td>93.20</td>
<td>94.45</td>
<td>1.25</td>
<td>1.21</td>
<td>D</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-07</td>
<td>133.90</td>
<td>135.30</td>
<td>1.4</td>
<td>1.38</td>
<td>E</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-07</td>
<td>135.30</td>
<td>136.50</td>
<td>1.2</td>
<td>1.18</td>
<td>E-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-07</td>
<td>136.50</td>
<td>137.90</td>
<td>1.4</td>
<td>1.38</td>
<td>E</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-07</td>
<td>154.60</td>
<td>155.00</td>
<td>0.4</td>
<td>0.40</td>
<td>F</td>
<td>CR</td>
</tr>
<tr>
<td>HUD12-07</td>
<td>155.00</td>
<td>156.80</td>
<td>1.8</td>
<td>1.80</td>
<td>F-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-07</td>
<td>156.80</td>
<td>160.00</td>
<td>3.2</td>
<td>3.19</td>
<td>F</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-07</td>
<td>175.40</td>
<td>176.90</td>
<td>1.5</td>
<td>1.41</td>
<td>G</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>0.00</td>
<td>12.19</td>
<td>12.19</td>
<td>Drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-08</td>
<td>27.50</td>
<td>28.00</td>
<td>0.5</td>
<td>0.48</td>
<td>A</td>
<td>CR</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>28.00</td>
<td>29.10</td>
<td>1.1</td>
<td>1.06</td>
<td>A</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>74.20</td>
<td>75.30</td>
<td>1.1</td>
<td>1.10</td>
<td>B</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>87.55</td>
<td>88.00</td>
<td>0.45</td>
<td>0.45</td>
<td>C</td>
<td>CR</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>88.00</td>
<td>88.80</td>
<td>0.8</td>
<td>0.80</td>
<td>C</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>93.30</td>
<td>94.30</td>
<td>1</td>
<td>1.00</td>
<td>D</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>101.20</td>
<td>102.30</td>
<td>1.1</td>
<td>1.10</td>
<td>E1</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>102.30</td>
<td>103.60</td>
<td>1.3</td>
<td>1.30</td>
<td>E1-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-08</td>
<td>103.60</td>
<td>104.40</td>
<td>0.8</td>
<td>0.80</td>
<td>E1</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>134.90</td>
<td>135.30</td>
<td>0.4</td>
<td>0.39</td>
<td>E</td>
<td>COAL</td>
</tr>
</tbody>
</table>
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD12-08</td>
<td>138.60</td>
<td>140.30</td>
<td>1.7</td>
<td>1.67</td>
<td>F</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>186.80</td>
<td>188.60</td>
<td>1.8</td>
<td>1.80</td>
<td>H</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>191.80</td>
<td>191.80</td>
<td>0.2</td>
<td>0.20</td>
<td>Coal</td>
<td>CR</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>192.50</td>
<td>193.10</td>
<td>0.6</td>
<td>0.60</td>
<td>Coal</td>
<td>CR</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>196.70</td>
<td>197.20</td>
<td>0.5</td>
<td>0.50</td>
<td>I</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-09</td>
<td>0.00</td>
<td>39.62</td>
<td>39.62</td>
<td></td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD12-09</td>
<td>62.40</td>
<td>63.00</td>
<td>0.6</td>
<td></td>
<td>E</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-09</td>
<td>78.00</td>
<td>82.00</td>
<td>4</td>
<td></td>
<td>E</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-09</td>
<td>85.60</td>
<td>86.30</td>
<td>0.7</td>
<td></td>
<td>E</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-09</td>
<td>105.20</td>
<td>106.80</td>
<td>1.6</td>
<td></td>
<td>F</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-09</td>
<td>112.90</td>
<td>117.50</td>
<td>4.6</td>
<td></td>
<td>F</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-09</td>
<td>117.80</td>
<td>118.60</td>
<td>0.8</td>
<td></td>
<td>F</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-09</td>
<td>119.70</td>
<td>150.20</td>
<td>30.5</td>
<td></td>
<td>F</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-09</td>
<td>162.30</td>
<td>162.60</td>
<td>0.3</td>
<td></td>
<td>F</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-09</td>
<td>165.80</td>
<td>166.40</td>
<td>0.6</td>
<td></td>
<td>F</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-09</td>
<td>170.10</td>
<td>173.30</td>
<td>3.2</td>
<td></td>
<td>F</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-09</td>
<td>190.60</td>
<td>193.20</td>
<td>2.6</td>
<td></td>
<td>G</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-09</td>
<td>194.60</td>
<td>196.30</td>
<td>1.7</td>
<td></td>
<td>G</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-09</td>
<td>201.60</td>
<td>202.20</td>
<td>0.6</td>
<td></td>
<td>Coal</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>0.00</td>
<td>6.09</td>
<td>6.09</td>
<td>6.09</td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD12-10</td>
<td>14.69</td>
<td>16.60</td>
<td>1.91</td>
<td>0.81</td>
<td>G?</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>21.64</td>
<td>21.87</td>
<td>0.23</td>
<td>0.10</td>
<td>Coal</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>80.89</td>
<td>81.90</td>
<td>1.01</td>
<td>0.43</td>
<td>C</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>81.90</td>
<td>82.20</td>
<td>0.3</td>
<td>0.13</td>
<td>C</td>
<td>CR</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>82.20</td>
<td>83.15</td>
<td>0.95</td>
<td>0.40</td>
<td>C</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>84.10</td>
<td>85.65</td>
<td>1.55</td>
<td>0.66</td>
<td>D</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>85.65</td>
<td>85.90</td>
<td>0.25</td>
<td>0.11</td>
<td>D-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-10</td>
<td>85.90</td>
<td>86.86</td>
<td>0.96</td>
<td>0.41</td>
<td>D</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>86.86</td>
<td>88.38</td>
<td>1.52</td>
<td>0.64</td>
<td>D-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-10</td>
<td>88.38</td>
<td>89.11</td>
<td>0.73</td>
<td>0.31</td>
<td>D</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>101.10</td>
<td>101.50</td>
<td>0.4</td>
<td>0.14</td>
<td>Coal</td>
<td>CR</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>105.91</td>
<td>106.15</td>
<td>0.24</td>
<td>0.08</td>
<td>Coal</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>110.60</td>
<td>111.60</td>
<td>1</td>
<td>0.34</td>
<td>E</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>111.60</td>
<td>113.34</td>
<td>1.74</td>
<td>0.60</td>
<td>E-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-10</td>
<td>113.34</td>
<td>113.60</td>
<td>0.26</td>
<td>0.09</td>
<td>E</td>
<td>COAL</td>
</tr>
</tbody>
</table>
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member
intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drilled</td>
<td>True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-10</td>
<td>113.60</td>
<td>114.45</td>
<td>0.85</td>
<td>0.29</td>
<td>E-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-10</td>
<td>114.45</td>
<td>115.00</td>
<td>0.55</td>
<td>0.19</td>
<td>E</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>115.00</td>
<td>115.78</td>
<td>0.78</td>
<td>0.27</td>
<td>E-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-10</td>
<td>115.78</td>
<td>116.17</td>
<td>0.39</td>
<td>0.13</td>
<td>E</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>131.35</td>
<td>132.75</td>
<td>1.4</td>
<td>0.48</td>
<td>F</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>135.85</td>
<td>136.75</td>
<td>0.9</td>
<td>0.31</td>
<td>F</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>149.31</td>
<td>149.85</td>
<td>0.54</td>
<td>0.18</td>
<td>I</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>151.70</td>
<td>152.10</td>
<td>0.4</td>
<td>0.14</td>
<td>Coal</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>152.83</td>
<td>154.29</td>
<td>1.46</td>
<td>0.50</td>
<td>Coal</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>157.30</td>
<td>158.43</td>
<td>1.13</td>
<td>0.39</td>
<td>Coal</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>161.72</td>
<td>162.40</td>
<td>0.68</td>
<td>0.18</td>
<td>Coal</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>164.89</td>
<td>165.86</td>
<td>0.97</td>
<td>0.88</td>
<td>H</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>167.20</td>
<td>167.73</td>
<td>0.53</td>
<td>0.48</td>
<td>Coal</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>170.20</td>
<td>170.70</td>
<td>0.5</td>
<td>0.43</td>
<td>Coal</td>
<td>CR</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>179.12</td>
<td>179.39</td>
<td>0.27</td>
<td>0.24</td>
<td>Coal</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>211.62</td>
<td>212.33</td>
<td>0.71</td>
<td>0.58</td>
<td>Coal</td>
<td>COAL</td>
</tr>
<tr>
<td>HUD12-11</td>
<td>0.00</td>
<td>12.16</td>
<td>12.16</td>
<td></td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD12-11</td>
<td>26.40</td>
<td>27.70</td>
<td>1.3</td>
<td></td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-11</td>
<td>33.10</td>
<td>35.10</td>
<td>2</td>
<td></td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-11</td>
<td>46.10</td>
<td>47.00</td>
<td>0.9</td>
<td></td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-11</td>
<td>47.00</td>
<td>48.80</td>
<td>1.8</td>
<td></td>
<td>E-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-11</td>
<td>48.80</td>
<td>49.00</td>
<td>0.2</td>
<td></td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-11</td>
<td>49.00</td>
<td>49.80</td>
<td>0.8</td>
<td></td>
<td>E-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-11</td>
<td>49.80</td>
<td>51.90</td>
<td>2.1</td>
<td></td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-11</td>
<td>52.80</td>
<td>53.10</td>
<td>0.3</td>
<td></td>
<td>C.Sh</td>
<td></td>
</tr>
<tr>
<td>HUD12-11</td>
<td>54.20</td>
<td>54.50</td>
<td>0.3</td>
<td></td>
<td>C.Sh</td>
<td></td>
</tr>
<tr>
<td>HUD12-11</td>
<td>55.10</td>
<td>55.50</td>
<td>0.4</td>
<td></td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-11</td>
<td>58.00</td>
<td>60.30</td>
<td>2.3</td>
<td></td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-11</td>
<td>76.40</td>
<td>77.20</td>
<td>0.8</td>
<td></td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-11</td>
<td>99.90</td>
<td>100.50</td>
<td>0.6</td>
<td></td>
<td>G-REP</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-11</td>
<td>117.90</td>
<td>118.60</td>
<td>0.7</td>
<td></td>
<td>H</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-11</td>
<td>146.50</td>
<td>146.90</td>
<td>0.4</td>
<td></td>
<td>K</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-11</td>
<td>146.90</td>
<td>147.70</td>
<td>0.8</td>
<td></td>
<td>K-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-11</td>
<td>147.70</td>
<td>148.00</td>
<td>0.3</td>
<td></td>
<td>K</td>
<td>Coal</td>
</tr>
</tbody>
</table>

No dip data, G and K seams repeated.
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drilled</td>
<td>True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-12</td>
<td>0.00</td>
<td>9.14</td>
<td>9.14</td>
<td></td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD12-12</td>
<td>28.20</td>
<td>35.20</td>
<td>7</td>
<td>3.50</td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-12</td>
<td>73.40</td>
<td>73.80</td>
<td>0.4</td>
<td>0.20</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-12</td>
<td>73.80</td>
<td>74.20</td>
<td>0.4</td>
<td>0.20</td>
<td>G-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-12</td>
<td>74.20</td>
<td>75.90</td>
<td>1.7</td>
<td>0.85</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-12</td>
<td>75.90</td>
<td>76.30</td>
<td>0.4</td>
<td>0.15</td>
<td>G-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-12</td>
<td>76.30</td>
<td>76.60</td>
<td>0.5</td>
<td>0.25</td>
<td>G-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-12</td>
<td>77.10</td>
<td>79.10</td>
<td>2</td>
<td>1.00</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-13</td>
<td>0.00</td>
<td>9.14</td>
<td>9.14</td>
<td></td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD12-13</td>
<td>10.90</td>
<td>11.50</td>
<td>0.6</td>
<td>0.58</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-13</td>
<td>11.50</td>
<td>11.90</td>
<td>0.4</td>
<td>0.39</td>
<td>G-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-13</td>
<td>11.90</td>
<td>12.60</td>
<td>0.7</td>
<td>0.68</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>HUD12-13</td>
<td>20.90</td>
<td>21.80</td>
<td>0.9</td>
<td>0.87</td>
<td>H</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-13</td>
<td>33.80</td>
<td>34.00</td>
<td>0.2</td>
<td>0.19</td>
<td>I</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-13</td>
<td>76.20</td>
<td>76.50</td>
<td>0.3</td>
<td>0.30</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-13</td>
<td>91.80</td>
<td>92.50</td>
<td>0.7</td>
<td>0.70</td>
<td>H</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-13</td>
<td>110.50</td>
<td>111.20</td>
<td>0.7</td>
<td>0.69</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-13</td>
<td>140.00</td>
<td>141.40</td>
<td>1.4</td>
<td>1.39</td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-13</td>
<td>153.10</td>
<td>154.65</td>
<td>1.55</td>
<td>1.54</td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-13</td>
<td>154.65</td>
<td>154.95</td>
<td>0.3</td>
<td>0.30</td>
<td>E-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-13</td>
<td>154.95</td>
<td>156.00</td>
<td>1.05</td>
<td>1.05</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>HUD12-13</td>
<td>173.70</td>
<td>177.10</td>
<td>3.4</td>
<td>3.35</td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-13</td>
<td>189.70</td>
<td>193.10</td>
<td>3.4</td>
<td>3.40</td>
<td>F-REP</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-13</td>
<td>194.40</td>
<td>195.10</td>
<td>0.7</td>
<td>0.70</td>
<td>Coal</td>
<td>CR</td>
</tr>
<tr>
<td>HUD12-14</td>
<td>0.00</td>
<td>36.00</td>
<td>36</td>
<td></td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD12-14</td>
<td>69.10</td>
<td>70.50</td>
<td>1.4</td>
<td></td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-14</td>
<td>108.00</td>
<td>108.60</td>
<td>0.6</td>
<td></td>
<td>H</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-14</td>
<td>173.60</td>
<td>174.50</td>
<td>0.9</td>
<td></td>
<td>H-REP</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-14</td>
<td>208.10</td>
<td>208.50</td>
<td>0.4</td>
<td></td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-14</td>
<td>229.50</td>
<td>230.20</td>
<td>0.7</td>
<td></td>
<td>J</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>0.00</td>
<td>6.09</td>
<td>6.09</td>
<td>6.09</td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD12-15</td>
<td>5.20</td>
<td>7.80</td>
<td>2.6</td>
<td>2.59</td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>14.90</td>
<td>15.20</td>
<td>0.3</td>
<td>0.30</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>15.70</td>
<td>16.00</td>
<td>0.3</td>
<td>0.30</td>
<td>Coal</td>
<td>Coal</td>
</tr>
</tbody>
</table>
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD12-15</td>
<td>37.60</td>
<td>37.80</td>
<td>0.2</td>
<td>0.20</td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>37.80</td>
<td>41.20</td>
<td>3.4</td>
<td>3.39</td>
<td>E-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-15</td>
<td>41.20</td>
<td>43.10</td>
<td>1.9</td>
<td>1.89</td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>47.30</td>
<td>47.50</td>
<td>0.2</td>
<td>0.20</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>58.60</td>
<td>58.70</td>
<td>0.1</td>
<td>0.10</td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>58.70</td>
<td>59.70</td>
<td>1</td>
<td>1.00</td>
<td>F-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-15</td>
<td>59.70</td>
<td>62.30</td>
<td>2.6</td>
<td>2.59</td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>70.80</td>
<td>71.20</td>
<td>0.4</td>
<td>0.40</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>71.20</td>
<td>71.80</td>
<td>0.6</td>
<td>0.60</td>
<td>G</td>
<td>CR</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>71.80</td>
<td>72.30</td>
<td>0.5</td>
<td>0.50</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>85.90</td>
<td>86.60</td>
<td>0.7</td>
<td>0.68</td>
<td>H</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>96.10</td>
<td>96.50</td>
<td>0.4</td>
<td>0.40</td>
<td>I</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>103.10</td>
<td>103.30</td>
<td>0.2</td>
<td>0.20</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>163.70</td>
<td>164.00</td>
<td>0.3</td>
<td>0.30</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>190.20</td>
<td>190.90</td>
<td>0.7</td>
<td>0.70</td>
<td>K</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-16</td>
<td>0.00</td>
<td>18.29</td>
<td>18.29</td>
<td></td>
<td></td>
<td>Drift</td>
</tr>
<tr>
<td>HUD12-16</td>
<td>80.10</td>
<td>80.60</td>
<td>0.5</td>
<td></td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-16</td>
<td>185.20</td>
<td>190.10</td>
<td>4.9</td>
<td></td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-16</td>
<td>194.50</td>
<td>194.90</td>
<td>0.4</td>
<td></td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-16</td>
<td>194.90</td>
<td>195.60</td>
<td>0.7</td>
<td></td>
<td>D-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-16</td>
<td>195.60</td>
<td>196.20</td>
<td>0.6</td>
<td></td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-16</td>
<td>206.70</td>
<td>207.20</td>
<td>0.5</td>
<td></td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-16</td>
<td>207.20</td>
<td>212.20</td>
<td>5</td>
<td></td>
<td>E-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-16</td>
<td>212.20</td>
<td>212.50</td>
<td>0.3</td>
<td></td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-16</td>
<td>218.20</td>
<td>218.70</td>
<td>0.5</td>
<td></td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-16</td>
<td>229.10</td>
<td>229.60</td>
<td>0.5</td>
<td></td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-16</td>
<td>229.60</td>
<td>230.90</td>
<td>1.3</td>
<td></td>
<td>F-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-16</td>
<td>230.90</td>
<td>231.30</td>
<td>0.4</td>
<td></td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-16</td>
<td>247.80</td>
<td>248.50</td>
<td>0.7</td>
<td></td>
<td>H</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-17</td>
<td>0.00</td>
<td>6.06</td>
<td>6.06</td>
<td></td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD12-17</td>
<td>6.06</td>
<td>40.50</td>
<td>34.44</td>
<td>22.14</td>
<td>Moosebar</td>
<td></td>
</tr>
<tr>
<td>HUD12-17</td>
<td>40.50</td>
<td>68.00</td>
<td>27.5</td>
<td>17.68</td>
<td>Bluesky</td>
<td></td>
</tr>
<tr>
<td>HUD12-17</td>
<td>68.00</td>
<td>70.00</td>
<td>2</td>
<td>1.29</td>
<td>A</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-18</td>
<td>0.00</td>
<td>12.19</td>
<td>12.19</td>
<td>12.19</td>
<td>Drift</td>
<td>Dresser</td>
</tr>
</tbody>
</table>

Dip data from HUD12-19.

No dip data, coal below.

Dresser in faulted sequence.
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam Lithology/Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD12-19</td>
<td>0.00</td>
<td>6.06</td>
<td>6.06</td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD12-19</td>
<td>6.06</td>
<td>21.50</td>
<td>15.44</td>
<td>Moosebar</td>
<td></td>
</tr>
<tr>
<td>HUD12-19</td>
<td>21.50</td>
<td>38.80</td>
<td>17.3</td>
<td>Bluesky</td>
<td></td>
</tr>
<tr>
<td>HUD12-19</td>
<td>38.80</td>
<td>40.10</td>
<td>1.3</td>
<td>A</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>59.90</td>
<td>61.30</td>
<td>1.4</td>
<td>B</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>84.80</td>
<td>85.70</td>
<td>0.9</td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>88.80</td>
<td>90.40</td>
<td>1.6</td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>123.60</td>
<td>123.90</td>
<td>0.3</td>
<td>E</td>
<td>CR</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>123.90</td>
<td>125.90</td>
<td>2</td>
<td>E-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-19</td>
<td>125.90</td>
<td>127.40</td>
<td>1.5</td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>136.00</td>
<td>136.20</td>
<td>0.2</td>
<td>Coal</td>
<td>CR</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>144.80</td>
<td>148.40</td>
<td>3.6</td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>155.70</td>
<td>156.00</td>
<td>0.3</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>161.30</td>
<td>162.20</td>
<td>0.9</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>162.20</td>
<td>162.45</td>
<td>0.25</td>
<td>G-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-19</td>
<td>162.45</td>
<td>163.50</td>
<td>1.05</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>HUD12-19</td>
<td>180.90</td>
<td>181.20</td>
<td>0.3</td>
<td>Coal</td>
<td>CR</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>184.40</td>
<td>186.70</td>
<td>2.3</td>
<td>H</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>193.60</td>
<td>194.20</td>
<td>0.6</td>
<td>I</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>197.20</td>
<td>197.30</td>
<td>0.1</td>
<td>Coal</td>
<td>CR</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>198.00</td>
<td>198.20</td>
<td>0.2</td>
<td>Coal</td>
<td>CR</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>207.60</td>
<td>210.70</td>
<td>3.1</td>
<td>J</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>241.30</td>
<td>242.40</td>
<td>1.1</td>
<td>K</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>242.40</td>
<td>243.00</td>
<td>0.6</td>
<td>K-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-19</td>
<td>243.00</td>
<td>246.40</td>
<td>3.4</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>HUD12-20</td>
<td>9.50</td>
<td>15.24</td>
<td>5.74</td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD12-20</td>
<td>9.50</td>
<td>11.27</td>
<td>1.77</td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-20</td>
<td>30.66</td>
<td>31.04</td>
<td>0.38</td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-20</td>
<td>48.43</td>
<td>50.22</td>
<td>1.79</td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-20</td>
<td>50.22</td>
<td>51.00</td>
<td>0.78</td>
<td>F-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-20</td>
<td>51.00</td>
<td>51.80</td>
<td>0.8</td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-20</td>
<td>51.80</td>
<td>54.26</td>
<td>2.46</td>
<td>F-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-20</td>
<td>54.26</td>
<td>55.20</td>
<td>0.94</td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-20</td>
<td>58.04</td>
<td>58.85</td>
<td>0.81</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-20</td>
<td>112.16</td>
<td>113.87</td>
<td>1.71</td>
<td>B</td>
<td>Coal</td>
</tr>
</tbody>
</table>

Dip data from dipmeter, HUD12-17 and HUD12-19 approximately same location, HUD12-19 vertical and HUD12-17 angle hole. Dip data from HUD12-19 also utilized for true thicknesses in HUD12-17. No dip data, sequence below C repeated.
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drilled</td>
<td>True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-20</td>
<td>119.30</td>
<td>120.69</td>
<td>1.39</td>
<td>C</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-20</td>
<td>120.69</td>
<td>122.90</td>
<td>2.21</td>
<td>C-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-20</td>
<td>122.90</td>
<td>123.50</td>
<td>0.6</td>
<td>C</td>
<td>C.Sh</td>
<td></td>
</tr>
<tr>
<td>HUD12-20</td>
<td>125.67</td>
<td>126.79</td>
<td>1.12</td>
<td>D</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-20</td>
<td>143.82</td>
<td>144.70</td>
<td>0.88</td>
<td>E</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-20</td>
<td>172.41</td>
<td>172.77</td>
<td>0.36</td>
<td>Coal</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-20</td>
<td>199.04</td>
<td>200.00</td>
<td>0.96</td>
<td>G</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>0.00</td>
<td>42.67</td>
<td>42.67</td>
<td>Drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>41.80</td>
<td>47.50</td>
<td>5.7</td>
<td>F</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>49.60</td>
<td>50.40</td>
<td>0.8</td>
<td>F1</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>90.50</td>
<td>91.90</td>
<td>1.4</td>
<td>E</td>
<td>C.Sh+ CR</td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>91.90</td>
<td>96.00</td>
<td>4.1</td>
<td>E-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>96.00</td>
<td>96.30</td>
<td>0.3</td>
<td>E</td>
<td>C.Sh</td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>100.70</td>
<td>106.10</td>
<td>5.4</td>
<td>F-REP</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>117.20</td>
<td>119.10</td>
<td>1.9</td>
<td>F1</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>124.50</td>
<td>124.90</td>
<td>0.4</td>
<td>C.Sh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>129.10</td>
<td>129.40</td>
<td>0.3</td>
<td>G</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>129.40</td>
<td>129.80</td>
<td>0.4</td>
<td>G-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>129.80</td>
<td>130.50</td>
<td>0.7</td>
<td>G</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>0.00</td>
<td>39.50</td>
<td>39.5</td>
<td>Drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>42.93</td>
<td>49.18</td>
<td>6.25</td>
<td>F</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>52.39</td>
<td>53.59</td>
<td>1.2</td>
<td>F1</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>53.59</td>
<td>54.70</td>
<td>1.11</td>
<td>F1-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>54.70</td>
<td>55.00</td>
<td>0.3</td>
<td>F1</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>97.40</td>
<td>99.30</td>
<td>1.9</td>
<td>E</td>
<td>C.Sh+CR</td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>104.67</td>
<td>112.43</td>
<td>7.76</td>
<td>F-REP</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>115.90</td>
<td>116.07</td>
<td>0.17</td>
<td>Coal</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-22</td>
<td>0.00</td>
<td>6.09</td>
<td>6.09</td>
<td>Drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-22</td>
<td>35.70</td>
<td>36.90</td>
<td>1.2</td>
<td>A</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-22</td>
<td>36.90</td>
<td>37.90</td>
<td>1</td>
<td>A-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-22</td>
<td>37.90</td>
<td>38.20</td>
<td>0.3</td>
<td>A</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-22</td>
<td>132.80</td>
<td>133.10</td>
<td>0.3</td>
<td>H</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-22</td>
<td>133.10</td>
<td>133.50</td>
<td>0.4</td>
<td>H-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-22</td>
<td>133.50</td>
<td>134.00</td>
<td>0.5</td>
<td>H</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-22</td>
<td>158.50</td>
<td>158.70</td>
<td>0.2</td>
<td>Coal</td>
<td>Coal</td>
<td></td>
</tr>
</tbody>
</table>
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam</th>
<th>Lithology/Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drilled</td>
<td>True</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-22</td>
<td>185.80</td>
<td>186.10</td>
<td>0.3</td>
<td>0.17</td>
<td>J</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-22</td>
<td>186.10</td>
<td>186.40</td>
<td>0.3</td>
<td>0.17</td>
<td>J-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-22</td>
<td>186.40</td>
<td>187.20</td>
<td>0.8</td>
<td>0.46</td>
<td>J</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-22</td>
<td>187.20</td>
<td>188.50</td>
<td>1.3</td>
<td>0.65</td>
<td>J-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-22</td>
<td>188.50</td>
<td>188.70</td>
<td>0.2</td>
<td>0.10</td>
<td>J</td>
<td>Coal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>9.14</td>
<td>9.14</td>
<td></td>
<td></td>
<td>Drift</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>28.00</td>
<td>28.20</td>
<td>0.2</td>
<td></td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>31.00</td>
<td>31.90</td>
<td>0.9</td>
<td></td>
<td>B</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>48.50</td>
<td>48.70</td>
<td>0.2</td>
<td></td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>48.70</td>
<td>49.20</td>
<td>0.5</td>
<td></td>
<td>C-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-23</td>
<td>49.20</td>
<td>49.60</td>
<td>0.4</td>
<td></td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>49.60</td>
<td>51.80</td>
<td>2.2</td>
<td></td>
<td>C-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-23</td>
<td>51.80</td>
<td>52.00</td>
<td>0.2</td>
<td></td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>55.70</td>
<td>56.00</td>
<td>0.3</td>
<td></td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>69.20</td>
<td>69.50</td>
<td>0.3</td>
<td></td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>79.90</td>
<td>80.60</td>
<td>0.7</td>
<td></td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>119.20</td>
<td>119.60</td>
<td>0.4</td>
<td></td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>119.60</td>
<td>124.60</td>
<td>5</td>
<td></td>
<td>E-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-23</td>
<td>124.60</td>
<td>125.80</td>
<td>1.2</td>
<td></td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>154.80</td>
<td>157.00</td>
<td>2.2</td>
<td></td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>157.00</td>
<td>157.60</td>
<td>0.6</td>
<td></td>
<td>F-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-23</td>
<td>157.60</td>
<td>157.80</td>
<td>0.2</td>
<td></td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>167.50</td>
<td>168.30</td>
<td>0.8</td>
<td></td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>190.20</td>
<td>191.20</td>
<td>1</td>
<td></td>
<td>H</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>196.40</td>
<td>196.70</td>
<td>0.3</td>
<td></td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>201.40</td>
<td>201.50</td>
<td>0.1</td>
<td></td>
<td>I</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>219.60</td>
<td>220.90</td>
<td>1.3</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>HUD12-23</td>
<td>220.90</td>
<td>221.50</td>
<td>0.6</td>
<td></td>
<td>J-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-24</td>
<td>221.50</td>
<td>221.80</td>
<td>0.3</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>9.14</td>
<td>9.14</td>
<td></td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD12-24</td>
<td>37.50</td>
<td>37.80</td>
<td>0.3</td>
<td>0.25</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-24</td>
<td>73.00</td>
<td>73.60</td>
<td>0.6</td>
<td>0.34</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-24</td>
<td>246.10</td>
<td>247.70</td>
<td>1.6</td>
<td>1.39</td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-24</td>
<td>254.40</td>
<td>255.70</td>
<td>1.3</td>
<td>1.13</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-24</td>
<td>255.70</td>
<td>256.60</td>
<td>0.9</td>
<td>0.78</td>
<td>G-PT</td>
<td></td>
</tr>
</tbody>
</table>

Notes: No dip data. Dips from dipmeter, coal seams from F below Fault. Dresser between F and upper seams.
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drilled</td>
<td>True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-24</td>
<td>256.60</td>
<td>256.70</td>
<td>0.1</td>
<td>G</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-24</td>
<td>258.80</td>
<td>259.00</td>
<td>0.2</td>
<td>Coal</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-24</td>
<td>261.00</td>
<td>261.80</td>
<td>0.8</td>
<td>H</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-24</td>
<td>267.40</td>
<td>267.80</td>
<td>0.4</td>
<td>F-REP</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-24</td>
<td>267.80</td>
<td>269.30</td>
<td>1.5</td>
<td>F-PT</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-24</td>
<td>269.30</td>
<td>271.30</td>
<td>2</td>
<td>F-REP</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-24</td>
<td>282.70</td>
<td>283.40</td>
<td>0.7</td>
<td>G</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-24</td>
<td>291.60</td>
<td>293.70</td>
<td>2.1</td>
<td>J</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-24</td>
<td>293.70</td>
<td>294.70</td>
<td>1</td>
<td>J-PT</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-24</td>
<td>294.70</td>
<td>295.00</td>
<td>0.3</td>
<td>J</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>0.00</td>
<td>9.14</td>
<td>9.14</td>
<td>Drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>9.14</td>
<td>22.60</td>
<td>13.46</td>
<td>Bluesky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>22.60</td>
<td>23.20</td>
<td>0.6</td>
<td>A?</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>23.20</td>
<td>23.60</td>
<td>0.4</td>
<td>A-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>23.60</td>
<td>24.70</td>
<td>1.1</td>
<td>A?</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>24.70</td>
<td>25.10</td>
<td>0.4</td>
<td>A-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>25.10</td>
<td>25.40</td>
<td>0.3</td>
<td>A?</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>25.40</td>
<td>26.40</td>
<td>1</td>
<td>A-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>26.40</td>
<td>26.70</td>
<td>0.3</td>
<td>A?</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>37.80</td>
<td>38.50</td>
<td>0.7</td>
<td>Coal</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>47.90</td>
<td>49.40</td>
<td>1.5</td>
<td>B</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>78.60</td>
<td>79.00</td>
<td>0.4</td>
<td>C</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>87.50</td>
<td>87.70</td>
<td>0.2</td>
<td>Coal</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>92.00</td>
<td>92.40</td>
<td>0.4</td>
<td>D</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>92.40</td>
<td>93.00</td>
<td>0.6</td>
<td>D-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>93.00</td>
<td>93.50</td>
<td>0.5</td>
<td>D</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>93.50</td>
<td>94.40</td>
<td>0.9</td>
<td>D-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>94.40</td>
<td>94.60</td>
<td>0.2</td>
<td>D</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>129.70</td>
<td>130.40</td>
<td>0.7</td>
<td>E</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>130.40</td>
<td>131.10</td>
<td>0.7</td>
<td>E-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>131.10</td>
<td>131.30</td>
<td>0.2</td>
<td>E</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>138.20</td>
<td>139.90</td>
<td>1.7</td>
<td>F</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>139.90</td>
<td>142.60</td>
<td>2.7</td>
<td>F-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>142.60</td>
<td>142.80</td>
<td>0.2</td>
<td>F</td>
<td>Coal</td>
<td></td>
</tr>
</tbody>
</table>
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drilled</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>145.90</td>
<td>146.50</td>
<td>0.6</td>
<td>G</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>146.50</td>
<td>149.40</td>
<td>2.9</td>
<td>G-P</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>149.40</td>
<td>149.50</td>
<td>0.1</td>
<td>G</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>167.50</td>
<td>167.80</td>
<td>0.3</td>
<td>H</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>179.70</td>
<td>179.90</td>
<td>0.2</td>
<td>I</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>199.40</td>
<td>199.60</td>
<td>0.2</td>
<td>J</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>245.10</td>
<td>245.70</td>
<td>0.6</td>
<td>K</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>245.70</td>
<td>247.50</td>
<td>1.8</td>
<td>K-P</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>247.50</td>
<td>247.70</td>
<td>0.2</td>
<td>K</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>247.70</td>
<td>251.30</td>
<td>3.6</td>
<td>K-P</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>251.30</td>
<td>254.40</td>
<td>3.1</td>
<td>K</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-26</td>
<td>0.00</td>
<td>9.14</td>
<td>9.14</td>
<td>Drift</td>
<td></td>
<td>HU12-26 and HU12-27 approximately at same location, HU12-26 vertical and HU12-27 angle, HU12-27 probably downdip, No dip data.</td>
</tr>
<tr>
<td>HUD12-26</td>
<td>9.14</td>
<td>22.70</td>
<td>13.56</td>
<td>Bluesky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-26</td>
<td>22.70</td>
<td>24.70</td>
<td>2</td>
<td>A</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-26</td>
<td>81.20</td>
<td>83.10</td>
<td>1.9</td>
<td>C</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-26</td>
<td>86.90</td>
<td>87.00</td>
<td>0.1</td>
<td>D</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>HUD12-26</td>
<td>87.00</td>
<td>87.65</td>
<td>0.65</td>
<td>D-P</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-26</td>
<td>87.65</td>
<td>91.30</td>
<td>3.65</td>
<td>D</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-26</td>
<td>115.40</td>
<td>118.50</td>
<td>3.1</td>
<td>F</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-26</td>
<td>118.50</td>
<td>120.50</td>
<td>2</td>
<td>F-P</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-26</td>
<td>120.50</td>
<td>120.90</td>
<td>0.4</td>
<td>F</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-26</td>
<td>129.70</td>
<td>130.60</td>
<td>0.9</td>
<td>G</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-26</td>
<td>151.50</td>
<td>151.90</td>
<td>0.4</td>
<td>H</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-26</td>
<td>163.50</td>
<td>163.80</td>
<td>0.3</td>
<td>I</td>
<td>C.sh</td>
<td></td>
</tr>
<tr>
<td>HUD12-26</td>
<td>169.40</td>
<td>169.60</td>
<td>0.2</td>
<td>Coal</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-27</td>
<td>0.00</td>
<td>9.14</td>
<td>9.14</td>
<td>Drift</td>
<td></td>
<td>HU12-27 and HU12-27 probably downdip, No dip data.</td>
</tr>
<tr>
<td>HUD12-27</td>
<td>9.14</td>
<td>70</td>
<td>60.86</td>
<td>Moosebar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-27</td>
<td>9.14</td>
<td>70</td>
<td>60.86</td>
<td>Drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-27</td>
<td>70</td>
<td>82</td>
<td>12</td>
<td>Bluesky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-28</td>
<td>0.00</td>
<td>4.57</td>
<td>4.57</td>
<td>Drift</td>
<td></td>
<td>No dip data.</td>
</tr>
<tr>
<td>HUD12-28</td>
<td>4.57</td>
<td>109.00</td>
<td>104.43</td>
<td>Moosebar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-28</td>
<td>109.00</td>
<td>140.65</td>
<td>31.65</td>
<td>Bluesky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-28</td>
<td>140.65</td>
<td>144.95</td>
<td>4.3</td>
<td>A</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-28</td>
<td>225.74</td>
<td>227.80</td>
<td>2.06</td>
<td>G?</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-29</td>
<td>0.00</td>
<td>7.01</td>
<td>7.01</td>
<td>Drift</td>
<td></td>
<td>Only Moosebar</td>
</tr>
<tr>
<td>HUD12-29</td>
<td>7.01</td>
<td>228</td>
<td>221</td>
<td>Moosebar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drilled</td>
<td>True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-30</td>
<td>0.00</td>
<td>9.14</td>
<td>9.14</td>
<td>Drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-30</td>
<td>9.14</td>
<td>105.00</td>
<td>95.86</td>
<td>Moosebar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-30</td>
<td>105.00</td>
<td>120.00</td>
<td>15</td>
<td>Bluesky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-30</td>
<td>120.90</td>
<td>121.30</td>
<td>0.4</td>
<td>A</td>
<td>Coal</td>
<td>No dip data.</td>
</tr>
<tr>
<td>HUD12-30</td>
<td>139.60</td>
<td>141.80</td>
<td>2.2</td>
<td>B</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-30</td>
<td>167.40</td>
<td>168.10</td>
<td>0.7</td>
<td>C</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-30</td>
<td>168.10</td>
<td>169.20</td>
<td>1.1</td>
<td>C-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-30</td>
<td>169.20</td>
<td>170.50</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-31</td>
<td>0.00</td>
<td>6.09</td>
<td>6.09</td>
<td>Drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-31</td>
<td>7.70</td>
<td>12.20</td>
<td>4.5</td>
<td>B</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-31</td>
<td>50.30</td>
<td>132.00</td>
<td>81.7</td>
<td>Moosebar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-31</td>
<td>132.00</td>
<td>145.00</td>
<td>13</td>
<td>Bluesky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-31</td>
<td>145.00</td>
<td>146.30</td>
<td>1.3</td>
<td>A</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-31</td>
<td>171.20</td>
<td>178.00</td>
<td>6.8</td>
<td>B</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-31</td>
<td>179.90</td>
<td>186.10</td>
<td>6.2</td>
<td>B-REP</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-31</td>
<td>207.00</td>
<td>207.90</td>
<td>0.9</td>
<td>C</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-31</td>
<td>213.90</td>
<td>214.90</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>0.00</td>
<td>5.18</td>
<td>5.18</td>
<td>Drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>10.90</td>
<td>16.00</td>
<td>5.1</td>
<td>B</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>45.00</td>
<td>46.00</td>
<td>1</td>
<td>B-REP</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>46.00</td>
<td>46.40</td>
<td>0.4</td>
<td>B-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>46.40</td>
<td>55.10</td>
<td>8.7</td>
<td>B</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>60.00</td>
<td>132.00</td>
<td>72</td>
<td>Moosebar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>132.00</td>
<td>147.00</td>
<td>15</td>
<td>Bluesky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>147.20</td>
<td>148.80</td>
<td>1.6</td>
<td>A</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>178.00</td>
<td>178.30</td>
<td>0.3</td>
<td>0.19</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>185.00</td>
<td>191.60</td>
<td>6.6</td>
<td>B</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>219.80</td>
<td>220.40</td>
<td>0.6</td>
<td>0.42</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>227.10</td>
<td>228.20</td>
<td>1.1</td>
<td>0.78</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>HUD12-32</td>
<td>0.00</td>
<td>4.57</td>
<td>4.57</td>
<td>Drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-32</td>
<td>33.35</td>
<td>35.74</td>
<td>2.39</td>
<td>E</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-32</td>
<td>35.74</td>
<td>36.63</td>
<td>0.89</td>
<td>E-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-32</td>
<td>36.63</td>
<td>36.92</td>
<td>0.29</td>
<td>E</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-32</td>
<td>88.00</td>
<td>90.25</td>
<td>2.25</td>
<td>F</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-32</td>
<td>121.83</td>
<td>122.22</td>
<td>0.39</td>
<td>Coal</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>Borehole</td>
<td>From (m)</td>
<td>To (m)</td>
<td>Thickness (m)</td>
<td>Seam</td>
<td>Lithology/ Fm/Member</td>
<td>Remarks</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>---------------</td>
<td>------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>HUD12-32</td>
<td>132.90</td>
<td>133.60</td>
<td>0.70</td>
<td>H</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-32</td>
<td>140.40</td>
<td>140.89</td>
<td>0.49</td>
<td>Coal</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-32</td>
<td>161.00</td>
<td>161.70</td>
<td>0.7</td>
<td>J</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-32</td>
<td>230.21</td>
<td>230.93</td>
<td>0.72</td>
<td>K</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-32</td>
<td>230.93</td>
<td>232.10</td>
<td>1.17</td>
<td>K-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-32</td>
<td>232.10</td>
<td>233.32</td>
<td>1.22</td>
<td>K</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-32</td>
<td>247.88</td>
<td>248.44</td>
<td>0.56</td>
<td>Coal</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-33</td>
<td>0.00</td>
<td>6.09</td>
<td>6.09</td>
<td></td>
<td></td>
<td>Drift</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>20.50</td>
<td>20.90</td>
<td>0.40</td>
<td>.39</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>21.30</td>
<td>22.70</td>
<td>1.4</td>
<td>1.36</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>45.60</td>
<td>47.60</td>
<td>2</td>
<td>1.97</td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>47.60</td>
<td>49.70</td>
<td>2.1</td>
<td>2.07</td>
<td>C-D-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-33</td>
<td>49.70</td>
<td>51.20</td>
<td>1.5</td>
<td>1.47</td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>62.25</td>
<td>62.35</td>
<td>0.1</td>
<td>0.10</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>73.80</td>
<td>75.80</td>
<td>2</td>
<td>1.97</td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>113.00</td>
<td>113.20</td>
<td>0.2</td>
<td>0.19</td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>113.20</td>
<td>113.50</td>
<td>0.3</td>
<td>0.29</td>
<td>F-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-33</td>
<td>113.50</td>
<td>115.40</td>
<td>1.9</td>
<td>1.84</td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>127.20</td>
<td>128.00</td>
<td>0.8</td>
<td>0.69</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>128.00</td>
<td>128.80</td>
<td>0.8</td>
<td>0.69</td>
<td>G-PT</td>
<td></td>
</tr>
<tr>
<td>HUD12-33</td>
<td>128.80</td>
<td>130.00</td>
<td>1.2</td>
<td>1.04</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>159.60</td>
<td>161.00</td>
<td>1.4</td>
<td>0.90</td>
<td>H</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>178.70</td>
<td>179.20</td>
<td>0.5</td>
<td>0.38</td>
<td>I</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>204.60</td>
<td>205.80</td>
<td>1.2</td>
<td>0.92</td>
<td>J</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>210.70</td>
<td>210.90</td>
<td>0.2</td>
<td>0.15</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>242.50</td>
<td>243.60</td>
<td>1.1</td>
<td>0.95</td>
<td>K</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD12-34</td>
<td>0.00</td>
<td>4.57</td>
<td>4.57</td>
<td>4.57</td>
<td></td>
<td>Drift</td>
</tr>
<tr>
<td>HUD12-34</td>
<td>43.80</td>
<td>46.30</td>
<td>2.5</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-34</td>
<td>47</td>
<td>47.20</td>
<td>0.20</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-34</td>
<td>54.90</td>
<td>55.80</td>
<td>0.9</td>
<td>E</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-34</td>
<td>55.80</td>
<td>56.80</td>
<td>1</td>
<td>E-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-34</td>
<td>56.80</td>
<td>57.20</td>
<td>0.4</td>
<td>E</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-34</td>
<td>72.20</td>
<td>73.70</td>
<td>1.5</td>
<td>F</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-34</td>
<td>100.20</td>
<td>101.50</td>
<td>1.3</td>
<td>G</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-34</td>
<td>114.00</td>
<td>114.30</td>
<td>0.3</td>
<td>H</td>
<td>Coal</td>
<td></td>
</tr>
</tbody>
</table>
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD12-34</td>
<td>123.30</td>
<td>123.50</td>
<td>0.2</td>
<td>I</td>
<td>Coal</td>
<td>No dip data.</td>
</tr>
<tr>
<td>HUD12-34</td>
<td>160.70</td>
<td>163.20</td>
<td>2.5</td>
<td>J</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-34</td>
<td>187.20</td>
<td>187.70</td>
<td>0.5</td>
<td>Coal</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD12-34</td>
<td>209.10</td>
<td>209.60</td>
<td>0.5</td>
<td>Coal</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>0.00</td>
<td>4.50</td>
<td>4.5</td>
<td>4.50</td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>5.67</td>
<td>7.9</td>
<td>2.23</td>
<td>2.10</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>9.2</td>
<td>10.25</td>
<td>1.05</td>
<td>0.99</td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>10.25</td>
<td>10.55</td>
<td>0.3</td>
<td>0.28</td>
<td>C-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>10.55</td>
<td>11.9</td>
<td>1.35</td>
<td>1.27</td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>14</td>
<td>15.9</td>
<td>1.9</td>
<td>1.77</td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>15.9</td>
<td>17.05</td>
<td>1.15</td>
<td>1.07</td>
<td>D-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>17.05</td>
<td>17.17</td>
<td>0.12</td>
<td>0.11</td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>46.75</td>
<td>47.58</td>
<td>0.83</td>
<td>0.79</td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>64.1</td>
<td>64.4</td>
<td>0.3</td>
<td>0.29</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>64.4</td>
<td>66</td>
<td>1.6</td>
<td>1.58</td>
<td>F-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>66</td>
<td>68.25</td>
<td>2.25</td>
<td>2.10</td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>82.4</td>
<td>82.75</td>
<td>0.35</td>
<td>0.34</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>82.75</td>
<td>83.22</td>
<td>0.47</td>
<td>0.45</td>
<td>G-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>83.22</td>
<td>84</td>
<td>0.78</td>
<td>0.75</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>90.2</td>
<td>90.4</td>
<td>0.2</td>
<td>0.19</td>
<td>H</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>5</td>
<td>19</td>
<td>14</td>
<td>13.99</td>
<td>Moosebar</td>
<td></td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>19</td>
<td>37.8</td>
<td>18.8</td>
<td>18.79</td>
<td>Bluesky</td>
<td></td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>37.80</td>
<td>39.32</td>
<td>1.52</td>
<td>1.16</td>
<td>A</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>59.10</td>
<td>60.60</td>
<td>1.50</td>
<td>1.23</td>
<td>B</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>84.7</td>
<td>85.1</td>
<td>0.40</td>
<td>0.33</td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>85.1</td>
<td>85.50</td>
<td>0.40</td>
<td>0.33</td>
<td>C-PT</td>
<td>PT</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>85.50</td>
<td>86.45</td>
<td>0.95</td>
<td>0.78</td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>89.90</td>
<td>91.40</td>
<td>1.50</td>
<td>1.23</td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>130.05</td>
<td>131.63</td>
<td>1.58</td>
<td>1.21</td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>148.35</td>
<td>151.00</td>
<td>2.65</td>
<td>2.03</td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>161.60</td>
<td>162.15</td>
<td>0.55</td>
<td>0.34</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>162.15</td>
<td>162.67</td>
<td>0.52</td>
<td>0.32</td>
<td>G-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>162.67</td>
<td>163.60</td>
<td>0.93</td>
<td>0.57</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>178.30</td>
<td>179.60</td>
<td>1.30</td>
<td>0.80</td>
<td>H</td>
<td>Coal</td>
</tr>
</tbody>
</table>
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD13-02C</td>
<td>179.60</td>
<td>180.35</td>
<td>0.75</td>
<td>0.46</td>
<td>H-PT</td>
<td>Drilled from Core, approximately same location as HUD12-17&12-19.</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>180.35</td>
<td>180.45</td>
<td>0.10</td>
<td>0.06</td>
<td>H</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>183.20</td>
<td>183.30</td>
<td>0.10</td>
<td>0.10</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>197.00</td>
<td>197.37</td>
<td>0.37</td>
<td>0.36</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>201.45</td>
<td>203.1</td>
<td>1.65</td>
<td>1.62</td>
<td>J</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>235.70</td>
<td>236.35</td>
<td>0.65</td>
<td>0.64</td>
<td>K</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>236.35</td>
<td>236.80</td>
<td>0.45</td>
<td>0.44</td>
<td>K-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>236.80</td>
<td>240.80</td>
<td>4.00</td>
<td>2.57</td>
<td>K</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>245.25</td>
<td>245.35</td>
<td>0.10</td>
<td>0.10</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>0.00</td>
<td>7.20</td>
<td>7.20</td>
<td>7.20</td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>12.00</td>
<td>12.30</td>
<td>0.30</td>
<td>0.30</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>61.85</td>
<td>64.55</td>
<td>2.70</td>
<td>2.70</td>
<td>F</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>68.42</td>
<td>69.45</td>
<td>1.03</td>
<td>1.03</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>69.45</td>
<td>69.85</td>
<td>0.4</td>
<td>0.40</td>
<td>G-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>69.85</td>
<td>71.02</td>
<td>1.17</td>
<td>1.17</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>82.20</td>
<td>82.55</td>
<td>0.35</td>
<td>0.35</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>84.90</td>
<td>85.70</td>
<td>0.8</td>
<td>0.80</td>
<td>H</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>103.80</td>
<td>104.20</td>
<td>0.4</td>
<td>0.40</td>
<td>I</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>117.20</td>
<td>118.60</td>
<td>1.4</td>
<td>1.40</td>
<td>J</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>122.20</td>
<td>122.57</td>
<td>0.37</td>
<td>0.37</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>130.30</td>
<td>130.35</td>
<td>0.05</td>
<td>0.05</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>143.30</td>
<td>143.50</td>
<td>0.2</td>
<td>0.20</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>165.05</td>
<td>165.20</td>
<td>0.15</td>
<td>0.15</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-04</td>
<td>0.00</td>
<td>6.09</td>
<td>6.09</td>
<td>6.09</td>
<td>Drift</td>
<td>Dip data from Core.</td>
</tr>
<tr>
<td>HUD13-04</td>
<td>6.09</td>
<td>30.87</td>
<td>24.78</td>
<td>18.58</td>
<td>Bluesky</td>
<td>Dip data from Core.</td>
</tr>
<tr>
<td>HUD13-04</td>
<td>30.87</td>
<td>32.55</td>
<td>1.68</td>
<td>1.29</td>
<td>A</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-04</td>
<td>78.8</td>
<td>81.78</td>
<td>2.98</td>
<td>2.28</td>
<td>B</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-04</td>
<td>98</td>
<td>98.6</td>
<td>0.6</td>
<td>0.46</td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-04</td>
<td>98.6</td>
<td>99</td>
<td>0.4</td>
<td>0.31</td>
<td>C-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-04</td>
<td>99</td>
<td>99.38</td>
<td>0.38</td>
<td>0.29</td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-04</td>
<td>140.2</td>
<td>141.65</td>
<td>1.45</td>
<td>1.11</td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-04</td>
<td>195</td>
<td>196.47</td>
<td>1.47</td>
<td>1.13</td>
<td>G</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-04</td>
<td>196.47</td>
<td>196.95</td>
<td>0.48</td>
<td>0.37</td>
<td>G-PT</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-04</td>
<td>196.95</td>
<td>197.27</td>
<td>0.32</td>
<td>0.25</td>
<td>G</td>
<td>Coal</td>
</tr>
</tbody>
</table>
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD13-05</td>
<td>0</td>
<td>10.66</td>
<td>10.66</td>
<td>0.00</td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>17.85</td>
<td>18.05</td>
<td>0.2</td>
<td>0.13</td>
<td>A Coal</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>30</td>
<td>30.95</td>
<td>0.95</td>
<td>0.61</td>
<td>B Coal</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>72.45</td>
<td>73.3</td>
<td>0.85</td>
<td>0.55</td>
<td>D Coal</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>78.95</td>
<td>80.5</td>
<td>1.55</td>
<td>1.00</td>
<td>E Coal</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>112.8</td>
<td>114.9</td>
<td>2.1</td>
<td>1.48</td>
<td>F Coal</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>114.9</td>
<td>116</td>
<td>1.1</td>
<td>0.78</td>
<td>F-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>116</td>
<td>116.2</td>
<td>0.2</td>
<td>0.14</td>
<td>F Coal</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>125.62</td>
<td>126.4</td>
<td>0.78</td>
<td>0.60</td>
<td>G Coal</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>144.96</td>
<td>146</td>
<td>1.04</td>
<td>0.80</td>
<td>H Coal</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>146</td>
<td>146.7</td>
<td>0.7</td>
<td>0.54</td>
<td>H-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>146.7</td>
<td>147</td>
<td>0.3</td>
<td>0.23</td>
<td>H Coal</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>151.03</td>
<td>151.22</td>
<td>0.19</td>
<td>0.15</td>
<td>Coal Coal</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>157.8</td>
<td>158.05</td>
<td>0.25</td>
<td>0.19</td>
<td>I Coal</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>174.75</td>
<td>175.2</td>
<td>0.45</td>
<td>0.34</td>
<td>J Coal</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>175.2</td>
<td>175.6</td>
<td>0.4</td>
<td>0.31</td>
<td>J-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>175.6</td>
<td>176.1</td>
<td>0.5</td>
<td>0.38</td>
<td>J Coal</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>176.1</td>
<td>176.7</td>
<td>0.6</td>
<td>0.46</td>
<td>J-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>176.7</td>
<td>177</td>
<td>0.3</td>
<td>0.23</td>
<td>J Coal</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>184.9</td>
<td>185</td>
<td>0.1</td>
<td>0.08</td>
<td>Coal Coal</td>
<td></td>
</tr>
<tr>
<td>HUD13-06</td>
<td>0.00</td>
<td>6.06</td>
<td>6.06</td>
<td>0.00</td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD13-06</td>
<td>3.50</td>
<td>4.50</td>
<td>1</td>
<td>0.82</td>
<td>F Coal</td>
<td>Dip data from dipmeter.</td>
</tr>
<tr>
<td>HUD13-06</td>
<td>19.00</td>
<td>19.55</td>
<td>0.55</td>
<td>0.45</td>
<td>H Coal</td>
<td>Dip data from dipmeter.</td>
</tr>
<tr>
<td>HUD13-06</td>
<td>39.00</td>
<td>39.20</td>
<td>0.2</td>
<td>0.16</td>
<td>I Coal</td>
<td>Dip data from dipmeter.</td>
</tr>
<tr>
<td>HUD13-06</td>
<td>42.80</td>
<td>43.00</td>
<td>0.2</td>
<td>0.16</td>
<td>Coal Coal</td>
<td>Dip data from dipmeter.</td>
</tr>
<tr>
<td>HUD13-06</td>
<td>45.30</td>
<td>46.95</td>
<td>1.65</td>
<td>1.35</td>
<td>J Coal</td>
<td>Dip data from dipmeter.</td>
</tr>
<tr>
<td>HUD13-06</td>
<td>87.35</td>
<td>88.75</td>
<td>1.4</td>
<td>1.27</td>
<td>K Coal</td>
<td>Dip data from dipmeter.</td>
</tr>
<tr>
<td>HUD13-06</td>
<td>97.70</td>
<td>98.00</td>
<td>0.3</td>
<td>0.19</td>
<td>Coal Coal</td>
<td>Dip data from dipmeter.</td>
</tr>
<tr>
<td>HUD13-06</td>
<td>101.18</td>
<td>101.80</td>
<td>0.62</td>
<td>0.40</td>
<td>Coal Coal</td>
<td>Dip data from dipmeter.</td>
</tr>
<tr>
<td>HUD13-06</td>
<td>108.2</td>
<td>108.93</td>
<td>0.73</td>
<td>0.47</td>
<td>Coal Coal</td>
<td>Dip data from dipmeter.</td>
</tr>
<tr>
<td>HUD13-06</td>
<td>111.75</td>
<td>112.83</td>
<td>1.08</td>
<td>0.69</td>
<td>Coal Coal</td>
<td>Dip data from dipmeter.</td>
</tr>
<tr>
<td>HUD13-06</td>
<td>116.25</td>
<td>116.94</td>
<td>0.65</td>
<td>0.42</td>
<td>Coal Coal</td>
<td>Dip data from dipmeter.</td>
</tr>
<tr>
<td>HUD13-06</td>
<td>152.4</td>
<td>152.65</td>
<td>0.25</td>
<td>0.20</td>
<td>Coal Coal</td>
<td>Dip data from dipmeter.</td>
</tr>
</tbody>
</table>
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member intervals in Hudette boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD13-07</td>
<td>0</td>
<td>2.74</td>
<td>2.74</td>
<td>0.00</td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD13-07</td>
<td>15.4</td>
<td>15.58</td>
<td>0.18</td>
<td>0.15</td>
<td>B</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-07</td>
<td>15.58</td>
<td>17.3</td>
<td>1.72</td>
<td>1.41</td>
<td>B-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-07</td>
<td>17.3</td>
<td>20</td>
<td>2.7</td>
<td>2.21</td>
<td>B</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-07</td>
<td>28.25</td>
<td>28.6</td>
<td>0.35</td>
<td>0.29</td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-07</td>
<td>30.07</td>
<td>34</td>
<td>3.93</td>
<td>3.22</td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-07</td>
<td>48.3</td>
<td>50.85</td>
<td>2.55</td>
<td>1.95</td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-07</td>
<td>111.5</td>
<td>192</td>
<td>80.5</td>
<td>61.67</td>
<td>Moosebar</td>
<td></td>
</tr>
<tr>
<td>HUD13-07</td>
<td>192</td>
<td>204.6</td>
<td>12.6</td>
<td>9.65</td>
<td>Bluesky</td>
<td></td>
</tr>
<tr>
<td>HUD13-07</td>
<td>204.6</td>
<td>205.07</td>
<td>0.47</td>
<td>0.33</td>
<td>A</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-07</td>
<td>205.07</td>
<td>206.05</td>
<td>0.98</td>
<td>0.63</td>
<td>A-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-07</td>
<td>206.05</td>
<td>208.15</td>
<td>2.1</td>
<td>1.35</td>
<td>A</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-07C</td>
<td>0</td>
<td>2.74</td>
<td>2.74</td>
<td>0.00</td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD13-07C</td>
<td>15.8</td>
<td>16</td>
<td>0.2</td>
<td>0.16</td>
<td>B</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-07C</td>
<td>16</td>
<td>17.85</td>
<td>1.85</td>
<td>1.52</td>
<td>B-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-07C</td>
<td>17.85</td>
<td>20.55</td>
<td>2.7</td>
<td>2.21</td>
<td>B</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-07C</td>
<td>28.4</td>
<td>29.6</td>
<td>1.2</td>
<td>0.98</td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-07C</td>
<td>31.95</td>
<td>35.6</td>
<td>3.65</td>
<td>2.99</td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-07C</td>
<td>35.6</td>
<td>36</td>
<td>0.4</td>
<td>0.33</td>
<td>D-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-07C</td>
<td>36</td>
<td>37</td>
<td>1</td>
<td>0.82</td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-07C</td>
<td>49.65</td>
<td>50.3</td>
<td>0.65</td>
<td>0.50</td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-07C</td>
<td>50.3</td>
<td>52.1</td>
<td>1.8</td>
<td>1.38</td>
<td>E-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-07C</td>
<td>52.1</td>
<td>52.55</td>
<td>0.45</td>
<td>0.34</td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-07C</td>
<td>52.55</td>
<td>53.3</td>
<td>0.75</td>
<td>0.57</td>
<td>E-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-07C</td>
<td>53.3</td>
<td>54.4</td>
<td>1.1</td>
<td>0.84</td>
<td>E</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-08</td>
<td>0</td>
<td>19.81</td>
<td>19.81</td>
<td>19.81</td>
<td>Drift</td>
<td></td>
</tr>
<tr>
<td>HUD13-08</td>
<td>19.81</td>
<td>30.2</td>
<td>0.4</td>
<td>0.20</td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-08</td>
<td>30.2</td>
<td>32.5</td>
<td>2.3</td>
<td>1.15</td>
<td>C-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-08</td>
<td>32.5</td>
<td>33.7</td>
<td>1.2</td>
<td>0.60</td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-08</td>
<td>36.05</td>
<td>37</td>
<td>0.95</td>
<td>0.48</td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-08</td>
<td>37</td>
<td>37.8</td>
<td>0.8</td>
<td>0.40</td>
<td>D-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-08</td>
<td>37.8</td>
<td>37.9</td>
<td>0.1</td>
<td>0.05</td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-08</td>
<td>37.9</td>
<td>38.55</td>
<td>0.65</td>
<td>0.32</td>
<td>D-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-08</td>
<td>38.55</td>
<td>39.7</td>
<td>1.15</td>
<td>0.58</td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-08</td>
<td>62.75</td>
<td>65.1</td>
<td>2.35</td>
<td>1.18</td>
<td>E</td>
<td>Coal</td>
</tr>
</tbody>
</table>
Table 5-1: Coal Seam, Drift, Moosebar Formation and Bluesky Member
intervals in Hudette boreholes (concluded)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Seam</th>
<th>Lithology/ Fm/Member</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drilled</td>
<td>True</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD13-08</td>
<td>147</td>
<td>147.45</td>
<td>0.45</td>
<td>0.19</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-08</td>
<td>178.6</td>
<td>178.85</td>
<td>0.25</td>
<td>0.04</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-08</td>
<td>179.8</td>
<td>180.05</td>
<td>0.25</td>
<td>0.04</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-08</td>
<td>181.3</td>
<td>181.8</td>
<td>0.5</td>
<td>0.09</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-08</td>
<td>182.8</td>
<td>189.3</td>
<td>6.5</td>
<td>1.13</td>
<td>C-REP</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-08</td>
<td>189.3</td>
<td>190</td>
<td>0.7</td>
<td>0.12</td>
<td>C-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-08</td>
<td>190</td>
<td>193.1</td>
<td>3.1</td>
<td>0.54</td>
<td>C</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-08</td>
<td>194.25</td>
<td>194.6</td>
<td>0.35</td>
<td>0.15</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-08</td>
<td>195.3</td>
<td>195.4</td>
<td>0.1</td>
<td>0.04</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-08</td>
<td>196.3</td>
<td>198.8</td>
<td>2.5</td>
<td>1.61</td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-08</td>
<td>198.8</td>
<td>200.3</td>
<td>1.5</td>
<td>1.41</td>
<td>D-PT</td>
<td></td>
</tr>
<tr>
<td>HUD13-08</td>
<td>200.3</td>
<td>200.4</td>
<td>0.1</td>
<td>0.09</td>
<td>D</td>
<td>Coal</td>
</tr>
<tr>
<td>HUD13-08</td>
<td>204.15</td>
<td>205.1</td>
<td>0.95</td>
<td>0.86</td>
<td>Coal</td>
<td>Coal</td>
</tr>
</tbody>
</table>

Notes: Hole deviation not included in True thickness, C.Sh only picked where significant. Abbreviations: C.Sh = carbonaceous shale, CR = Coaly Rock, T.Thick = True Thickness, Seam coal = Unidentified seam, Fm = Formation, Drift = Overburden, Moosebar = Moosebar Formation, Bluesky = Bluesky Member, Dresser = Dresser formation, PT = Parting, G? = uncertain identification

5.1 Coal seam development

The coal seams of the Gething Formation within the Hudette coal property range in true thickness from thin traces of 0.04 metres up to 7.42 metres. Lateral extent of these coal seams varies from few hundred metres to over two thousand metres. A number of these coal seams are correlatable across the license area, while others appear to be more localised in extent. The thickest and most consistently-developed coal seams occur in the upper part of the Gething Formation at Hudette. At the present stage of exploration, seams B, C, D, E and F are considered to be potentially-mineable.

Coal seam nomenclature from previous work done by Esso Resources (Klatzel-Mudry, 1984) and Norcen (Newson, 1980a) is not followed in this report because many more coals were recognised during the relatively close-spaced exploratory drilling of this project. However, for reference, the Brenda Seam of previous workers is considered equivalent to the F Seam as recognised within the current study.

Following is a brief description, in stratigraphic order from top down, of the correlatable coal seams encountered in the Hudette area.

5.1.1 A-seam

Seam A is the uppermost coal seam of the Gething Formation and occur at the contact of Gething Formation and Bluesky Member. The seam is not thick enough to be considered as
potentially -mineable, but is a valuable marker for correlation. The seam was intersected in 21 holes and true thickness was calculated in 16 holes (Table 5-1). The coal seam also appears as carbonaceous shale in two holes (HUD12-01 & HUD12-03), located along the western edge of the exploration area.

The true thickness ranges from 0.19 metre to 2.09 metre with average and median thicknesses of 0.70 metre and 0.56 metre. Thickness in excess of one metre was intersected in ten holes, generally located in the central part of the property. The apparent thickness in one hole (HUD12-28) exceeds 4 metres, although true thickness is not known. The seam consists of one ply except in holes HUD12-25 and HUD13-07, HUD12-22 and HUD12-08.

Seam A was intersected only in HUD13-02C core hole. The coal is dull with minor bright bands, solid, hard and includes minor mudstone intercalations.

5.1.1.1 Interval between A-Seam and B-Seam

The true interval data between A seam and B-seam is available from 12 holes. It commonly varies from 19 metres to 32 metres, although it ranges from 8 metres to 42 metres (Table 5-2). The median and average thicknesses of the A seam to B seam interval are 28 metres and 25.73 metres respectively. The apparent thickness varies from 12 metre to 81 metres, but is commonly in the range of 18.3 metres to 37 metres. The average and median apparent thicknesses are 33.43 metres and 29.94 metres.

Lithologies recorded in HUD 13-02C include sandstone, siltstone and mudstone, although very fine to very fine grained sandstone and siltstone constitute the major lithology.

5.1.2 B-Seam

B-seam was intersected in 29 holes (Table 5-1), although few of these holes are very closely spaced for the reason of either understanding the structure or obtaining the samples for quality information. Eighteen of these holes have data to calculate the true thickness. The seam appeared twice in four holes (HUD11-07, HUD11-07C, HUD12-31, and HUD12-31C) as a result of structural repetition.

The seam is generally developed throughout the investigated area. The true thickness of the seam varies from 0.61 metre to 5.59 metres with median and average thicknesses of 2.36 metres and 2.57 metres. Thickness between 1.92 metre and 3.0 metre were recorded in twelve holes. Thickness exceeding 4 metres probably resulted from structural thickening. The apparent thicknesses (where no true thickness available) are generally within the range of true thicknesses.

The seam is made up of more than one ply in 5 holes. The parting is generally less than one metre except in HUD13-07C where it reaches 1.41 metres. The parting includes mudstone and carbonaceous mudstone.

B seam was cored in five holes (HUD11-01C, HUD11-07C, HUD12-31C, HUD13-01C and HUD13-02C). Ten samples were collected from these five holes (Table 3-8). The recovery varies from very poor to 100%. The coal is generally dull with minor bright bands, solid to very sheared and blocky. The samples collected from the cores were analysed and the results are presented in Appendix-2.
Table 5-2: Interseam intervals (as-drilled and true)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>Depths (in metres)</th>
<th>Thickness</th>
<th>Between Seams</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>From</td>
<td>To</td>
<td>Drilled</td>
</tr>
<tr>
<td>HUD11-03</td>
<td>61.88</td>
<td>96.08</td>
<td>34.2</td>
</tr>
<tr>
<td>HUD11-07</td>
<td>45.45</td>
<td>74.60</td>
<td>29.15</td>
</tr>
<tr>
<td>HUD11-08</td>
<td>42.13</td>
<td>72.86</td>
<td>30.73</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>44.70</td>
<td>73.51</td>
<td>28.81</td>
</tr>
<tr>
<td>HUD12-01</td>
<td>117.00</td>
<td>154.00</td>
<td>37</td>
</tr>
<tr>
<td>HUD12-03</td>
<td>37.00</td>
<td>73.40</td>
<td>36.4</td>
</tr>
<tr>
<td>HUD12-04</td>
<td>80.00</td>
<td>136.50</td>
<td>56.5</td>
</tr>
<tr>
<td>HUD12-07</td>
<td>58.80</td>
<td>83.60</td>
<td>24.8</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>29.10</td>
<td>74.20</td>
<td>45.1</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>40.10</td>
<td>59.90</td>
<td>19.8</td>
</tr>
<tr>
<td>HUD12-25</td>
<td>26.70</td>
<td>47.90</td>
<td>21.2</td>
</tr>
<tr>
<td>HUD12-28</td>
<td>144.95</td>
<td>225.74</td>
<td>80.79</td>
</tr>
<tr>
<td>HUD12-30</td>
<td>121.30</td>
<td>139.60</td>
<td>18.3</td>
</tr>
<tr>
<td>HUD12-31</td>
<td>146.30</td>
<td>171.20</td>
<td>24.9</td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>148.80</td>
<td>185.00</td>
<td>36.2</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>39.32</td>
<td>59.10</td>
<td>19.78</td>
</tr>
<tr>
<td>HUD13-04</td>
<td>32.55</td>
<td>78.8</td>
<td>46.25</td>
</tr>
<tr>
<td>HUD13-05</td>
<td>18.05</td>
<td>30</td>
<td>11.95</td>
</tr>
<tr>
<td>HUD11-01</td>
<td>46.12</td>
<td>43.13</td>
<td>2.99</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>15.85</td>
<td>13.88</td>
<td>1.97</td>
</tr>
<tr>
<td>HUD11-03</td>
<td>107.71</td>
<td>98.77</td>
<td>8.94</td>
</tr>
<tr>
<td>HUD11-04</td>
<td>75.90</td>
<td>70.95</td>
<td>4.95</td>
</tr>
<tr>
<td>HUD11-05</td>
<td>59.03</td>
<td>33.24</td>
<td>25.79</td>
</tr>
<tr>
<td>HUD11-06</td>
<td>21.51</td>
<td>20.20</td>
<td>1.31</td>
</tr>
<tr>
<td>HUD11-07</td>
<td>78.44</td>
<td>76.67</td>
<td>1.77</td>
</tr>
<tr>
<td>HUD11-08</td>
<td>78.98</td>
<td>74.98</td>
<td>4.00</td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>48.60</td>
<td>44.41</td>
<td>4.19</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>76.72</td>
<td>75.55</td>
<td>1.17</td>
</tr>
<tr>
<td>HUD12-01</td>
<td>157.90</td>
<td>156.90</td>
<td>1.00</td>
</tr>
<tr>
<td>HUD12-03</td>
<td>76.00</td>
<td>74.50</td>
<td>1.50</td>
</tr>
<tr>
<td>HUD12-04</td>
<td>146.00</td>
<td>139.00</td>
<td>7.00</td>
</tr>
<tr>
<td>HUD12-07</td>
<td>89.90</td>
<td>85.60</td>
<td>4.30</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>87.55</td>
<td>75.30</td>
<td>12.25</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>84.80</td>
<td>61.30</td>
<td>23.50</td>
</tr>
<tr>
<td>HUD12-20</td>
<td>119.30</td>
<td>113.87</td>
<td>5.43</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>48.50</td>
<td>31.90</td>
<td>16.60</td>
</tr>
<tr>
<td>HUD12-25</td>
<td>78.60</td>
<td>49.40</td>
<td>29.20</td>
</tr>
</tbody>
</table>
Table 5-2: Interseam intervals (as-drilled and true)-(Continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Lower</th>
<th>Upper</th>
<th>Intake</th>
<th>Yield</th>
<th>Seam Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD12-30</td>
<td>167.40</td>
<td>141.80</td>
<td>25.60</td>
<td>B-C</td>
<td></td>
</tr>
<tr>
<td>HUD12-31</td>
<td>207.00</td>
<td>186.10</td>
<td>20.90</td>
<td>14.86</td>
<td>B-C</td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>219.80</td>
<td>191.60</td>
<td>28.20</td>
<td>19.74</td>
<td>B-C</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>9.2</td>
<td>7.9</td>
<td>1.30</td>
<td>1.22</td>
<td>B-C</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>84.7</td>
<td>60.60</td>
<td>24.10</td>
<td>19.78</td>
<td>B-C</td>
</tr>
<tr>
<td>HUD13-04</td>
<td>98</td>
<td>81.78</td>
<td>16.22</td>
<td>12.16</td>
<td>B-C</td>
</tr>
<tr>
<td>HUD13-07</td>
<td>28.25</td>
<td>20</td>
<td>8.25</td>
<td>6.83</td>
<td>B-C</td>
</tr>
<tr>
<td>HUD13-07C</td>
<td>28.4</td>
<td>20.55</td>
<td>7.85</td>
<td>6.41</td>
<td>B-C</td>
</tr>
<tr>
<td>HUD11-01</td>
<td>51.40</td>
<td>60.95</td>
<td>9.55</td>
<td>9.38</td>
<td>C-D</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>18.41</td>
<td>20.04</td>
<td>1.63</td>
<td>1.53</td>
<td>C-D</td>
</tr>
<tr>
<td>HUD11-03</td>
<td>119.88</td>
<td>122.45</td>
<td>2.57</td>
<td></td>
<td>C-D</td>
</tr>
<tr>
<td>HUD11-04</td>
<td>77.98</td>
<td>81.10</td>
<td>3.12</td>
<td></td>
<td>C-D</td>
</tr>
<tr>
<td>HUD11-05</td>
<td>59.97</td>
<td>63.84</td>
<td>3.87</td>
<td></td>
<td>C-D</td>
</tr>
<tr>
<td>HUD11-06</td>
<td>27.08</td>
<td>28.46</td>
<td>1.38</td>
<td></td>
<td>C-D</td>
</tr>
<tr>
<td>HUD11-07</td>
<td>81.29</td>
<td>83.05</td>
<td>1.76</td>
<td>1.65</td>
<td>C-D</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>50.68</td>
<td>61.21</td>
<td>10.53</td>
<td>10.37</td>
<td>C-D</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>79.78</td>
<td>81.78</td>
<td>2.00</td>
<td>1.87</td>
<td>C-D</td>
</tr>
<tr>
<td>HUD12-01</td>
<td>160.30</td>
<td>162.40</td>
<td>2.10</td>
<td></td>
<td>C-D</td>
</tr>
<tr>
<td>HUD12-03</td>
<td>78.50</td>
<td>79.80</td>
<td>1.30</td>
<td>1.18</td>
<td>C-D</td>
</tr>
<tr>
<td>HUD12-04</td>
<td>148.00</td>
<td>157.00</td>
<td>9.00</td>
<td></td>
<td>C-D</td>
</tr>
<tr>
<td>HUD12-07</td>
<td>92.25</td>
<td>93.20</td>
<td>0.95</td>
<td>0.92</td>
<td>C-D</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>88.80</td>
<td>93.30</td>
<td>4.50</td>
<td>4.50</td>
<td>C-D</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>83.15</td>
<td>84.10</td>
<td>0.95</td>
<td>0.40</td>
<td>C-D</td>
</tr>
<tr>
<td>HUD12-11</td>
<td>27.70</td>
<td>33.10</td>
<td>5.40</td>
<td></td>
<td>C-D</td>
</tr>
<tr>
<td>HUD12-16</td>
<td>190.10</td>
<td>194.50</td>
<td>4.40</td>
<td></td>
<td>C-D</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>85.70</td>
<td>88.80</td>
<td>3.10</td>
<td>2.92</td>
<td>C-D</td>
</tr>
<tr>
<td>HUD12-20</td>
<td>123.50</td>
<td>125.67</td>
<td>2.17</td>
<td></td>
<td>C-D</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>52.00</td>
<td>79.90</td>
<td>27.90</td>
<td></td>
<td>C-D</td>
</tr>
<tr>
<td>HUD12-25</td>
<td>79.00</td>
<td>92.00</td>
<td>13.00</td>
<td></td>
<td>C-D</td>
</tr>
<tr>
<td>HUD12-26</td>
<td>86.90</td>
<td>83.10</td>
<td>3.80</td>
<td></td>
<td>C-D</td>
</tr>
<tr>
<td>HUD12-31</td>
<td>207.90</td>
<td>213.90</td>
<td>6.00</td>
<td>4.26</td>
<td>C-D</td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>220.40</td>
<td>227.10</td>
<td>6.70</td>
<td>4.69</td>
<td>C-D</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>47.60</td>
<td>49.90</td>
<td>2.30</td>
<td>2.19</td>
<td>C-D</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>11.9</td>
<td>14</td>
<td>2.10</td>
<td>1.97</td>
<td>C-D</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>86.45</td>
<td>89.90</td>
<td>3.45</td>
<td>2.83</td>
<td>C-D</td>
</tr>
<tr>
<td>HUD13-07</td>
<td>28.6</td>
<td>30.07</td>
<td>1.47</td>
<td>1.21</td>
<td>C-D</td>
</tr>
</tbody>
</table>
Table 5-2: Interseam intervals (as-drilled and true)-(Continued)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD13-07C</td>
<td>29.6</td>
<td>31.95</td>
<td>2.35</td>
<td>1.86</td>
</tr>
<tr>
<td>HUD13-08</td>
<td>33.7</td>
<td>36.05</td>
<td>2.35</td>
<td>1.17</td>
</tr>
<tr>
<td>HUD11-01</td>
<td>90.66</td>
<td>64.03</td>
<td>26.63</td>
<td>26.63</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>49.71</td>
<td>23.78</td>
<td>25.93</td>
<td>23.97</td>
</tr>
<tr>
<td>HUD11-03</td>
<td>153.8</td>
<td>127.02</td>
<td>26.78</td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>103.71</td>
<td>84.06</td>
<td>19.65</td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>78.61</td>
<td>65.63</td>
<td>12.98</td>
<td></td>
</tr>
<tr>
<td>HUD11-06</td>
<td>52.50</td>
<td>30.67</td>
<td>21.83</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>112.69</td>
<td>85.50</td>
<td>27.19</td>
<td>24.63</td>
</tr>
<tr>
<td>HUD11-08</td>
<td>121.49</td>
<td>87.51</td>
<td>33.98</td>
<td>25.79</td>
</tr>
<tr>
<td>HUD11-09</td>
<td>40.1</td>
<td>24.59</td>
<td>15.51</td>
<td></td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>87.80</td>
<td>61.70</td>
<td>26.1</td>
<td>25.56</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>109.52</td>
<td>83.52</td>
<td>26</td>
<td>23.60</td>
</tr>
<tr>
<td>HUD12-01</td>
<td>209.70</td>
<td>165.80</td>
<td>43.9</td>
<td></td>
</tr>
<tr>
<td>HUD12-03</td>
<td>97.75</td>
<td>82.10</td>
<td>15.65</td>
<td>14.15</td>
</tr>
<tr>
<td>HUD12-04</td>
<td>171.50</td>
<td>159.00</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>HUD12-07</td>
<td>133.90</td>
<td>94.45</td>
<td>39.45</td>
<td>38.18</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>134.90</td>
<td>94.30</td>
<td>40.6</td>
<td>42.00</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>101.10</td>
<td>89.11</td>
<td>11.99</td>
<td>5.09</td>
</tr>
<tr>
<td>HUD12-11</td>
<td>46.10</td>
<td>35.10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>HUD12-13</td>
<td>153.10</td>
<td>141.40</td>
<td>11.7</td>
<td>11.60</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>37.60</td>
<td>7.80</td>
<td>29.8</td>
<td>29.50</td>
</tr>
<tr>
<td>HUD12-16</td>
<td>206.70</td>
<td>196.20</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>HUD12-19</td>
<td>123.60</td>
<td>90.40</td>
<td>33.2</td>
<td>31.12</td>
</tr>
<tr>
<td>HUD12-20</td>
<td>30.66</td>
<td>11.27</td>
<td>19.39</td>
<td></td>
</tr>
<tr>
<td>HUD12-23</td>
<td>119.20</td>
<td>80.60</td>
<td>38.6</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>129.70</td>
<td>94.60</td>
<td>35.1</td>
<td></td>
</tr>
<tr>
<td>HUD12-33</td>
<td>73.80</td>
<td>51.20</td>
<td>22.6</td>
<td>22.14</td>
</tr>
<tr>
<td>HUD12-34</td>
<td>54.90</td>
<td>47.20</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>46.75</td>
<td>17.17</td>
<td>29.58</td>
<td>27.11</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>130.05</td>
<td>91.40</td>
<td>38.65</td>
<td>31.69</td>
</tr>
<tr>
<td>HUD13-05</td>
<td>78.95</td>
<td>73.73</td>
<td>5.22</td>
<td>4.00</td>
</tr>
<tr>
<td>HUD13-07</td>
<td>48.3</td>
<td>34</td>
<td>14.3</td>
<td>11.71</td>
</tr>
<tr>
<td>HUD13-07C</td>
<td>49.65</td>
<td>37</td>
<td>12.65</td>
<td>10.37</td>
</tr>
<tr>
<td>HUD13-08</td>
<td>62.75</td>
<td>39.7</td>
<td>23.05</td>
<td>11.60</td>
</tr>
<tr>
<td>HUD11-01</td>
<td>107.39</td>
<td>94.65</td>
<td>12.74</td>
<td>12.55</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>70.12</td>
<td>52.85</td>
<td>17.27</td>
<td>16.52</td>
</tr>
<tr>
<td>HUD11-03</td>
<td>163.49</td>
<td>157.91</td>
<td>5.58</td>
<td></td>
</tr>
<tr>
<td>Table 5-2: Interseam intervals (as-drilled and true)-(Continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>113.39</td>
<td>107.8</td>
<td>5.59</td>
<td>E-F</td>
</tr>
<tr>
<td>HUD11-05</td>
<td>90.11</td>
<td>83.23</td>
<td>6.88</td>
<td>E-F</td>
</tr>
<tr>
<td>HUD11-07</td>
<td>133.33</td>
<td>115.28</td>
<td>18.05</td>
<td>15.63</td>
</tr>
<tr>
<td>HUD11-08</td>
<td>141.69</td>
<td>124.64</td>
<td>17.05</td>
<td>16.47</td>
</tr>
<tr>
<td>HUD11-09</td>
<td>47.69</td>
<td>42.23</td>
<td>5.46</td>
<td>E-F</td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>104.55</td>
<td>91.57</td>
<td>12.98</td>
<td>12.78</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>130.2</td>
<td>112.27</td>
<td>17.93</td>
<td>15.53</td>
</tr>
<tr>
<td>HUD12-01</td>
<td>219.2</td>
<td>99</td>
<td>52.6</td>
<td>47.67</td>
</tr>
<tr>
<td>HUD12-02</td>
<td>102.1</td>
<td>54.1</td>
<td>48</td>
<td>E-F</td>
</tr>
<tr>
<td>HUD12-03</td>
<td>151.6</td>
<td>172</td>
<td>14</td>
<td>E-F</td>
</tr>
<tr>
<td>HUD12-04</td>
<td>98.8</td>
<td>77</td>
<td>21.8</td>
<td>21.00</td>
</tr>
<tr>
<td>HUD12-07</td>
<td>154.6</td>
<td>137.9</td>
<td>16.7</td>
<td>16.45</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>138.6</td>
<td>135.3</td>
<td>3.3</td>
<td>3.22</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>131.35</td>
<td>116.17</td>
<td>15.18</td>
<td>5.19</td>
</tr>
<tr>
<td>HUD12-13</td>
<td>173.7</td>
<td>156</td>
<td>17.7</td>
<td>17.63</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>58.6</td>
<td>43.1</td>
<td>15.5</td>
<td>15.44</td>
</tr>
<tr>
<td>HUD12-16</td>
<td>229.1</td>
<td>212.5</td>
<td>16.6</td>
<td>E-F</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>144.8</td>
<td>127.4</td>
<td>17.4</td>
<td>16.81</td>
</tr>
<tr>
<td>HUD12-20</td>
<td>172.41</td>
<td>144.7</td>
<td>27.71</td>
<td>E-F</td>
</tr>
<tr>
<td>HUD12-21</td>
<td>100.7</td>
<td>96.3</td>
<td>4.4</td>
<td>3.99</td>
</tr>
<tr>
<td>HUD12-21C</td>
<td>104.67</td>
<td>99.3</td>
<td>5.37</td>
<td>4.87</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>154.8</td>
<td>125.8</td>
<td>29</td>
<td>E-F</td>
</tr>
<tr>
<td>HUD12-25</td>
<td>138.2</td>
<td>131.3</td>
<td>6.9</td>
<td>E-F</td>
</tr>
<tr>
<td>HUD12-32</td>
<td>88</td>
<td>36.92</td>
<td>51.08</td>
<td>E-F</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>113</td>
<td>75.8</td>
<td>37.2</td>
<td>36.63</td>
</tr>
<tr>
<td>HUD12-34</td>
<td>72.2</td>
<td>57.2</td>
<td>15</td>
<td>E-F</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>66</td>
<td>47.58</td>
<td>18.42</td>
<td>17.62</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>148.35</td>
<td>131.63</td>
<td>16.72</td>
<td>12.81</td>
</tr>
<tr>
<td>HUD13-05</td>
<td>112.8</td>
<td>80.5</td>
<td>32.3</td>
<td>24.54</td>
</tr>
<tr>
<td>HUD11-01</td>
<td>131.47</td>
<td>111.38</td>
<td>20.09</td>
<td>19.89</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>88.09</td>
<td>74.40</td>
<td>13.69</td>
<td>12.78</td>
</tr>
<tr>
<td>HUD11-04</td>
<td>141.96</td>
<td>118.50</td>
<td>23.46</td>
<td>F-G</td>
</tr>
<tr>
<td>HUD11-05</td>
<td>120.96</td>
<td>92.08</td>
<td>28.88</td>
<td>F-G</td>
</tr>
<tr>
<td>HUD11-07</td>
<td>179.42</td>
<td>170.83</td>
<td>8.59</td>
<td>8.07</td>
</tr>
<tr>
<td>HUD11-08</td>
<td>154.07</td>
<td>144.14</td>
<td>9.93</td>
<td>9.78</td>
</tr>
<tr>
<td>HUD11-09</td>
<td>67.78</td>
<td>49.52</td>
<td>18.26</td>
<td>F-G</td>
</tr>
</tbody>
</table>
Table 5-2: Interseam intervals (as-drilled and true)-(Continued)

<table>
<thead>
<tr>
<th>HUD11-07C</th>
<th>154.00</th>
<th>147.24</th>
<th>6.76</th>
<th>6.34</th>
<th>F-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD12-02</td>
<td>107.10</td>
<td>104.80</td>
<td>2.3</td>
<td></td>
<td>F-G</td>
</tr>
<tr>
<td>HUD12-03</td>
<td>161.00</td>
<td>155.30</td>
<td>5.7</td>
<td>5.17</td>
<td>F-G</td>
</tr>
<tr>
<td>HUD12-04</td>
<td>194.00</td>
<td>187.70</td>
<td>6.3</td>
<td></td>
<td>F-G</td>
</tr>
<tr>
<td>HUD12-07</td>
<td>175.40</td>
<td>160.00</td>
<td>15.4</td>
<td>15.34</td>
<td>F-G</td>
</tr>
<tr>
<td>HUD12-09</td>
<td>190.60</td>
<td>173.30</td>
<td>17.3</td>
<td></td>
<td>F-G</td>
</tr>
<tr>
<td>HUD12-11</td>
<td>76.40</td>
<td>60.30</td>
<td>16.1</td>
<td></td>
<td>F-G</td>
</tr>
<tr>
<td>HUD12-12</td>
<td>73.40</td>
<td>35.20</td>
<td>38.2</td>
<td></td>
<td>F-G</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>70.80</td>
<td>62.30</td>
<td>8.5</td>
<td>8.47</td>
<td>F-G</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>161.30</td>
<td>148.40</td>
<td>12.9</td>
<td>12.70</td>
<td>F-G</td>
</tr>
<tr>
<td>HUD12-20</td>
<td>58.04</td>
<td>55.20</td>
<td>2.84</td>
<td></td>
<td>F-G</td>
</tr>
<tr>
<td>HUD12-21</td>
<td>129.10</td>
<td>106.10</td>
<td>23</td>
<td>22.00</td>
<td>F-G</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>167.50</td>
<td>157.80</td>
<td>9.7</td>
<td></td>
<td>F-G</td>
</tr>
<tr>
<td>HUD12-24</td>
<td>254.40</td>
<td>247.70</td>
<td>6.7</td>
<td>5.80</td>
<td>F-G</td>
</tr>
<tr>
<td>HUD12-25</td>
<td>145.90</td>
<td>142.80</td>
<td>3.1</td>
<td></td>
<td>F-G</td>
</tr>
<tr>
<td>HUD12-26</td>
<td>129.70</td>
<td>120.90</td>
<td>8.8</td>
<td></td>
<td>F-G</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>127.20</td>
<td>115.40</td>
<td>11.8</td>
<td>11.40</td>
<td>F-G</td>
</tr>
<tr>
<td>HUD12-34</td>
<td>100.20</td>
<td>73.70</td>
<td>26.5</td>
<td></td>
<td>F-G</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>82.4</td>
<td>68.25</td>
<td>14.15</td>
<td>13.21</td>
<td>F-G</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>161.60</td>
<td>151.00</td>
<td>10.6</td>
<td>8.12</td>
<td>F-G</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>68.42</td>
<td>64.55</td>
<td>3.87</td>
<td>3.87</td>
<td>F-G</td>
</tr>
<tr>
<td>HUD13-05</td>
<td>125.62</td>
<td>116.2</td>
<td>9.42</td>
<td>7.15</td>
<td>F-G</td>
</tr>
<tr>
<td>HUD11-01</td>
<td>141.91</td>
<td>133.14</td>
<td>8.77</td>
<td>8.68</td>
<td>G-H</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>95.93</td>
<td>89.72</td>
<td>6.21</td>
<td>6.00</td>
<td>G-H</td>
</tr>
<tr>
<td>HUD11-04</td>
<td>157.09</td>
<td>143.71</td>
<td>13.38</td>
<td></td>
<td>G-H</td>
</tr>
<tr>
<td>HUD11-05</td>
<td>138.37</td>
<td>122.03</td>
<td>16.34</td>
<td></td>
<td>G-H</td>
</tr>
<tr>
<td>HUD11-07</td>
<td>187.48</td>
<td>181.13</td>
<td>6.35</td>
<td>5.97</td>
<td>G-H</td>
</tr>
<tr>
<td>HUD11-08</td>
<td>161.95</td>
<td>155.90</td>
<td>6.05</td>
<td>5.84</td>
<td>G-H</td>
</tr>
<tr>
<td>HUD11-09</td>
<td>93.22</td>
<td>68.51</td>
<td>24.71</td>
<td></td>
<td>G-H</td>
</tr>
<tr>
<td>HUD12-02</td>
<td>123.10</td>
<td>109.20</td>
<td>13.9</td>
<td></td>
<td>G-H</td>
</tr>
<tr>
<td>HUD12-03</td>
<td>169.70</td>
<td>163.30</td>
<td>6.4</td>
<td>5.80</td>
<td>G-H</td>
</tr>
<tr>
<td>HUD12-11</td>
<td>117.90</td>
<td>100.50</td>
<td>17.4</td>
<td></td>
<td>G-H</td>
</tr>
<tr>
<td>HUD12-13</td>
<td>20.90</td>
<td>12.60</td>
<td>8.3</td>
<td>8.02</td>
<td>G-H</td>
</tr>
<tr>
<td>HUD12-14</td>
<td>108.00</td>
<td>70.50</td>
<td>37.5</td>
<td></td>
<td>G-H</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>85.90</td>
<td>72.30</td>
<td>13.6</td>
<td>13.55</td>
<td>G-H</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>184.40</td>
<td>163.50</td>
<td>20.9</td>
<td>18.10</td>
<td>G-H</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>190.20</td>
<td>168.30</td>
<td>21.9</td>
<td></td>
<td>G-H</td>
</tr>
<tr>
<td>HUD12-24</td>
<td>261.00</td>
<td>256.70</td>
<td>4.3</td>
<td>3.90</td>
<td>G-H</td>
</tr>
<tr>
<td>Table 5-2: Interseam intervals (as-drilled and true) -(Continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>167.50</td>
<td>149.50</td>
<td>18</td>
<td>G-H</td>
<td></td>
</tr>
<tr>
<td>HUD12-26</td>
<td>151.50</td>
<td>130.60</td>
<td>20.9</td>
<td>G-H</td>
<td></td>
</tr>
<tr>
<td>HUD12-33</td>
<td>159.60</td>
<td>130.00</td>
<td>29.6</td>
<td>19.00</td>
<td>G-H</td>
</tr>
<tr>
<td>HUD12-34</td>
<td>114.00</td>
<td>101.50</td>
<td>12.5</td>
<td>G-H</td>
<td></td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>90.2</td>
<td>84</td>
<td>6.2</td>
<td>5.99</td>
<td>G-H</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>178.30</td>
<td>163.60</td>
<td>14.7</td>
<td>9.05</td>
<td>G-H</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>84.90</td>
<td>71.02</td>
<td>13.88</td>
<td>13.87</td>
<td>G-H</td>
</tr>
<tr>
<td>HUD13-05</td>
<td>144.96</td>
<td>126.4</td>
<td>18.56</td>
<td>14.10</td>
<td>G-H</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>108.64</td>
<td>96.39</td>
<td>12.25</td>
<td>11.94</td>
<td>H-I</td>
</tr>
<tr>
<td>HUD11-07</td>
<td>201.98</td>
<td>187.89</td>
<td>14.09</td>
<td>13.24</td>
<td>H-I</td>
</tr>
<tr>
<td>HUD11-08</td>
<td>172.81</td>
<td>162.58</td>
<td>10.23</td>
<td>9.88</td>
<td>H-I</td>
</tr>
<tr>
<td>HUD12-02</td>
<td>139.20</td>
<td>123.70</td>
<td>15.5</td>
<td></td>
<td>H-I</td>
</tr>
<tr>
<td>HUD12-03</td>
<td>184.60</td>
<td>170.30</td>
<td>14.3</td>
<td>12.96</td>
<td>H-I</td>
</tr>
<tr>
<td>HUD12-13</td>
<td>33.80</td>
<td>21.80</td>
<td>12</td>
<td>11.59</td>
<td>H-I</td>
</tr>
<tr>
<td>HUD12-15</td>
<td>96.10</td>
<td>86.60</td>
<td>9.5</td>
<td>9.29</td>
<td>H-I</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>193.60</td>
<td>186.70</td>
<td>6.9</td>
<td>4.44</td>
<td>H-I</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>196.40</td>
<td>201.40</td>
<td>5</td>
<td></td>
<td>H-I</td>
</tr>
<tr>
<td>HUD12-25</td>
<td>179.70</td>
<td>167.80</td>
<td>11.9</td>
<td></td>
<td>H-I</td>
</tr>
<tr>
<td>HUD12-26</td>
<td>163.50</td>
<td>151.90</td>
<td>11.6</td>
<td></td>
<td>H-I</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>178.70</td>
<td>161.00</td>
<td>17.7</td>
<td>11.38</td>
<td>H-I</td>
</tr>
<tr>
<td>HUD12-34</td>
<td>123.30</td>
<td>114.30</td>
<td>9</td>
<td></td>
<td>H-I</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>103.80</td>
<td>85.70</td>
<td>18.1</td>
<td>18.08</td>
<td>H-I</td>
</tr>
<tr>
<td>HUD13-05</td>
<td>157.80</td>
<td>147.00</td>
<td>10.8</td>
<td>8.20</td>
<td>H-I</td>
</tr>
<tr>
<td>HUD13-06</td>
<td>39.00</td>
<td>19.55</td>
<td>19.45</td>
<td>15.93</td>
<td>H-I</td>
</tr>
<tr>
<td>HUD11-02</td>
<td>127.95</td>
<td>108.90</td>
<td>19.05</td>
<td>18.56</td>
<td>I-J</td>
</tr>
<tr>
<td>HUD11-07</td>
<td>223.68</td>
<td>202.13</td>
<td>21.55</td>
<td>20.82</td>
<td>I-J</td>
</tr>
<tr>
<td>HUD11-08</td>
<td>193.51</td>
<td>173.20</td>
<td>20.31</td>
<td>19.62</td>
<td>I-J</td>
</tr>
<tr>
<td>HUD12-02</td>
<td>150.60</td>
<td>139.50</td>
<td>11.10</td>
<td></td>
<td>I-J</td>
</tr>
<tr>
<td>HUD12-03</td>
<td>203.10</td>
<td>184.90</td>
<td>18.20</td>
<td>16.49</td>
<td>I-J</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>207.60</td>
<td>194.20</td>
<td>13.40</td>
<td>8.61</td>
<td>I-J</td>
</tr>
<tr>
<td>HUD12-23</td>
<td>201.40</td>
<td>196.70</td>
<td>4.70</td>
<td></td>
<td>I-J</td>
</tr>
<tr>
<td>HUD12-25</td>
<td>199.40</td>
<td>179.90</td>
<td>19.50</td>
<td></td>
<td>I-J</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>204.60</td>
<td>179.20</td>
<td>25.40</td>
<td>19.46</td>
<td>I-J</td>
</tr>
<tr>
<td>HUD12-34</td>
<td>160.70</td>
<td>123.50</td>
<td>37.20</td>
<td></td>
<td>I-J</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>117.20</td>
<td>104.20</td>
<td>13.00</td>
<td>12.99</td>
<td>I-J</td>
</tr>
<tr>
<td>HUD13-05</td>
<td>174.75</td>
<td>158.05</td>
<td>16.70</td>
<td>12.69</td>
<td>I-J</td>
</tr>
<tr>
<td>HUD13-06</td>
<td>45.30</td>
<td>39.20</td>
<td>6.10</td>
<td>5.00</td>
<td>I-J</td>
</tr>
<tr>
<td>HUD12-19</td>
<td>241.30</td>
<td>210.70</td>
<td>30.60</td>
<td>17.55</td>
<td>J-K</td>
</tr>
<tr>
<td>HUD12-25</td>
<td>245.10</td>
<td>199.60</td>
<td>45.50</td>
<td></td>
<td>J-K</td>
</tr>
</tbody>
</table>
Table 5-2: Interseam intervals (as-drilled and true)-(Concluded)

<table>
<thead>
<tr>
<th></th>
<th>As-Drilled</th>
<th>True</th>
<th>J-K</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD12-32</td>
<td>230.21</td>
<td>161.70</td>
<td>68.51</td>
</tr>
<tr>
<td>HUD12-33</td>
<td>242.50</td>
<td>205.80</td>
<td>36.70</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>235.70</td>
<td>203.1</td>
<td>32.60</td>
</tr>
<tr>
<td>HUD13-06</td>
<td>87.35</td>
<td>46.95</td>
<td>40.40</td>
</tr>
</tbody>
</table>

5.1.2.1 Interval between B-Seam and C-Seam

The entire interval between B and C seam was intersected in 27 drill holes (Table 5-2). The true thickness of this interval was calculated in 16 holes. The true thickness of the interval varies from 1.09 metre to 33.19 metres with average and median thicknesses of 8.43 metres and 6.41 metres. The interval is generally thin in the western part and thick in the eastern part. The apparent thickness is generally in the same range and appears to follow the same trend.

The lithology in core holes between B seam and C seam comprises dominantly very fine grained to fine grained sandstone and siltstone in HUD13-02C and dark grey, carbonaceous mudstone in HUD12-31C. The intervals in other core holes are small but consist of mudstone.

5.1.3 C-Seam

C-seam was encountered in 33 holes (Table 5-1) and was also repeated in three holes (HUD11-07, HUD11-07C & HUD13-08). Out of these 33 holes, 9 holes were very closely drilled for obtaining the structural information and collecting samples for quality studies. The true thicknesses of the seams and partings were calculated in 20 holes. The seam consists of one ply in 15 holes and generally two, in the remaining holes. The single ply holes commonly occur in the northern (trending northwest-southeast) portion of the investigated area. The true thickness of the C-zone varies from 1.06 metres to 5.33 metres whereas the true thickness of the net coal varies from 0.29 metres to 4.05 metres with average and median thicknesses of 1.73 metres and 1.72 metres. True stratigraphic thicknesses exceeding 2 metres occur in 8 holes and apparent (as-drilled) thickness exceeding 2 metres was found in 16 holes. The thicker seams generally occurs in the southwestern portion of the investigated area. The true thickness of the parting varies from 0.12 metres to 1.22m with average and median thickness of the 0.55 metres and 0.42 metres.

Nine samples of C Seam were collected (Table 3-8) from the cores of the four holes (HUD11-01C, HUD11-07C, HUD13-01C and HUD13-02C) for analyses. The analytical results are presented in Appendix-B. The core recovery varies from poor to 100%. The coal is generally dull to bright and solid to broken.

5.1.3.1 Interval between C-Seam and D-Seam

The interval between C seam and D seam was intersected in 32 holes and the true thickness was computed in 20 holes (Table 5-2). The true thickness of the interval ranges from 0.40 metre to 10.37 metres, although thicknesses exceeding 4 metres were intersected only at three locations (HUD11-01 and 01C, HUD12-31and 31C and HUD12-08). The average and median true thicknesses are 2.89 metres and 1.92 metres respectively. The apparent thickness of 28 metres in hole HUD12-23 probably resulted from structural repetition.
The interval between C-Seam and D-Seam, where cored, consist of dark grey, carbonaceous mudstone.

5.1.4 D-Seam

D Seam was encountered in 36 holes (Table 5-1) and was also repeated in two holes (HUD11-07 and HUD12-20). Eleven of these holes were very closely drilled at five locations for structure interpretation and sample collection. The true seam thickness was computed in 22 holes (Table 5-1).

The coal zone has been correlated with certainty in most of the holes. However, parting between C and D seams is very small in few holes which make it difficult to place the boundary between these seams.

D seam generally lies one to three metres below C seam and consist of one to three plies. The true thickness of the zone (parting and coal) ranges from 1.83 metres to 4.14 metres with average and median thicknesses of 2.99 metres and 3.03 metres. The true thickness of the net coal (including single ply) ranges from 0.48 metre to 3.81 metres with average and median thickness of 1.74 metres and 1.54 metres. The coals exceeding 2 metres in thickness commonly occur in the western portion of the investigated area.

Three samples with moderate to good recovery were collected from HUD11-01C, HUD13-01C and HUD13-02C for analyses (Table 3-8). The results of these samples are presented in Appendix-B. The coal varies from dull with minor bright bands to dull and bright banded, commonly hard and solid and occasionally broken to pulverised.

5.1.4.1 Interval between D-Seam and E-Seam

The sequence between D seam and E seam was penetrated by 33 holes (Table 5-2). The true interval from D seam floor to E seam roof changes from 10 metres to 42 metres. The average and median thicknesses are 24.73 metres and 25.93 metres respectively. The thinner intervals generally occur in the southwest corner of the exploration area.

The lithology between D seam and E seam interval comprises dominantly very fine grained to fine grained sandstone in cores of HUD 13-01C and HUD13-02C.

5.1.5 E-Seam

E seam was intersected in 40 holes (Table 5-1). 11 of these holes were drilled within few metres at five locations for interpreting the structure or collecting the samples for analyses. The seam was also repeated in one hole (HUD12-20). The true thickness of the seam was calculated in 23 holes. Although the seam occur throughout the investigated area, the thickness (true thickness in 4 holes and apparent thickness in 6 holes) in excess of 2 metre was found in only 10 holes which are generally located in the southwestern portion of the investigated area.

Six to eight metres below D seam, a seam with considerable thickness (net coal of 2.54 metres and 1.90 metres) was picked in holes HUD11-09 and HUD 12-08. This seam is named E1. It appears that this seam is very localised.

E seam consists of a single ply in 13 holes, two plies in 22 holes, three plies in 3 holes and 4 plies in two holes (Table 5-1). The zone thickness (true thickness) varies from 1 metre...
Coal Assessment Report for the Hudette coal property, British Columbia

to 5.48 metres with average and median thicknesses of 3.36 metres and 3.42 metres. The total true thickness of parting changes from 30 centimetres to 3.72 metres. The average and median thicknesses of parting are 1.78 metres and 1.93 metres respectively. The true thickness of net coal ranges from 0.40 metre to 2.69 metres with average and median thicknesses of 1.42 metres and 1.38 metres.

The seam was intersected in core holes HUD13-01C and HUD13-02C. Two samples were collected for analyses (Table 3-8). The results are presented in Appendix-2. The coal is dull and bright banded, solid, hard and occasionally granular.

5.1.5.1 Interval between E-Seam and F-Seam

The complete sequence from the floor of E-Seam to the roof of F-Seam was crossed in 33 holes; however the true thickness of the sequence was computed in only 20 holes (Table 5-2). The true thickness ranges from 3.22 metres to 47.67 metres whereas apparent thickness in all drilled holes ranges from 3.22 metres to 52.60 metres. The average and median true thicknesses are 15.39 metres and 15.53 metres respectively. The thinner intervals occur in the middle of the southern portion of the investigated area. The thickest sequences are located in the northwest region.

The interval between E-Seam and F-Seam comprises mudstone in core holes HUD13-01C and HUD13-02C and sandstone with minor mudstone in HUD13-03C.

5.1.6 F-Seam

F-Seam forms the most laterally consistent coal horizon in Hudette property and is the most economically-attractive seam. It is also the thickest coal zone and typically consists of one to two plies. The seam has adequate thickness and continuity to be considered for mining. In previous work (Klatzel-Mudry et al., 1984), F-Seam was designated as the Brenda Seam.

F-Seam occurs 3 metres to 47 metres below E-Seam. F-Seam was intersected in 40 holes and was also found twice due to structural repetition in six holes (Table 5-1). Thirteen of these holes are very closely spaced at six locations for structural interpretation or coring for coal seam sampling.

An associated coal bed, the F1 coal seam, is locally developed in three holes (HUD11-05, HUD12-21 and HUD21C). This seam occurs 2 metres to 15 metres below F-Seam. It is 0.73 metres and 1.36 metres thick in HUD12-21 and HUD12-21C respectively (true thickness) and 1.97 metres thick in HUD11-05 (apparent thickness).

The true thickness of F-Seam was computed in 26 holes (Table 5-1). The seam is made up of a single ply in 29 cases, double plies in 3 cases, and triple plies in 3 cases. The true thickness of the F-zone varies from 1.85 metres to 5.72 metres with average and median thicknesses of 3.67 metres and 3.82 metres. The parting thickness changes from 0.29 metres to 3.19 metres. The average and median thicknesses of the parting are 1.25 metres and 1.19 metres respectively. The net coal ranges from 0.73 metres to 6.89 metres with average and median thicknesses of 2.90 metres and 2.69 metres. The seam exceeding 2 metres (apparent and true) was found in 30 holes. The thicker coal occur in central portion of the investigated area, trending northwest-southeast.

Five core holes intersected F seam. The recovery was poor to excellent in these holes. 14 samples were collected and sent to laboratory for analyses (Table 3-8). The results are
presented in Appendix B. The coal is generally dull with minor bright bands. The bright bands are more common in lower part. It is commonly solid and occasionally broken to pulverised.

5.1.6.1 Interval between F-Seam and G-Seam

The complete section between F-Seam and G-Seam was intersected in 29 holes (Table 5-2). The true thickness of the section was computed in 18 holes. The true thickness varies from 3.87 metres to 22 metres. The average and median true thicknesses are 11.72 metres and 10.59 metres. The apparent thickness ranges from 2.3 metres to 38.2 metres. The thinner intervals between the F and G coals commonly occur in the northwestern part of the investigated area.

Lithologies of this interval, where cored, vary from sandstone to mudstone. Mudstone is dominant in HUD13-02C and HUD13-03C, whereas siltstone and very fine sandstone constitute major lithology in HUD13-01C.

5.1.7 G-Seam

G seam was identified in 34 holes (Table 5-1) which extend throughout the investigated area. The seam was also repeated in 2 holes. Thirteen of these holes were drilled as pairs or a triplet, situated within tens of metres of each other, at six locations for structural interpretation and coring for sample collection. The true thickness was determined in 20 holes (Table 5-1). Although the true thickness ranges from 0.51 metre to 2.20 metres, the thickness exceeding 1.50 metres was encountered in 11 holes. The true average and median thicknesses are 1.44 metres and 1.50 metres respectively. The apparent thickness varies from 0.30 metres to 3.0 metres. The thicker seams were generally intersected in the western part. The G seam comprises one ply in 19 holes, two plies in 13 holes, three plies in one hole and four plies in one hole. The partings in more than one ply seams are commonly less than one metre thick.

Five samples were collected from year-2013 drill cores for analyses (Table 3-8). The results are presented in Appendix B of the present report. The recovery was moderate to excellent. The coal is bright with dull bands, closely cleated in places, and commonly solid to broken.

5.1.7.1 Interval between G-Seam and H-Seam

The interval between G-Seam and H-Seam was intersected in 24 holes (Table 5-2). Fourteen of these holes had data to compute true thickness. The true thickness ranges from 3.90 metres to 19.0 metres, however 5.80 metres to 9.30 metres is the common interval. The average and median true thicknesses are 9.23 metres and 8.02 metres. Apparent thickness changes from 4.3 metres to 46 metres. The thicker interval was noticed in the holes located in the western part.

Dark grey mudstone, siltstone and very fine sandstone were encountered in coring holes between G-Seam and H-Seam.

5.1.8 H-Seam

Although H seam appears to be developed throughout the investigated area, its thickness rarely exceeds one metre. The seam was identified in 30 holes (Table 5-1) and was also repeated in two holes. Eight holes (at four locations) are situated as pairs, a few metres apart. True thickness was computed in 18 holes. The true thickness varies from 0.19 metre to 1.80
metres with average and median thicknesses of 0.77 metre and 0.71 metre. The apparent
thickness changes from 0.20 metre to 3.18 metres. The seam consists of a single ply except in
3 holes (HUD12-22, HUD13-02C HUD13-05) where less than 50 centimetres of intervening
parting was noted.

Two samples were collected from HUD13-02C and HUD13-03C (Table 3-8) for
analyses. The results are presented in Appendix B. The recovery was moderate. The coal is
bright and dull banded and commonly solid.

5.1.8.1 Interval between H-Seam and I-Seam

The interval between H-Seam and I-Seam was intersected in 16 holes. The true thickness
of the interval ranges from 4.44 metres to 18.08 metres with average and median
thicknesses of 11.87 metres and 11.76 metres. Sandstone is the dominant lithology in this
interval in core hole HUD13-03C.

5.1.9 I-Seam

I-Seam is economically-insignificant, insofar as its thickness does not exceed 50 centimetres
at any point of measurement. However, the seam is a useful marker for correlation among
several holes.

I-Seam was encountered in 18 holes and true thickness was calculated in 12 holes (Table
5-1). The thickness ranges from 14 centimetres to 50 centimetres with average and median
thicknesses of 0.30 metre and 0.32 metre, respectively.

One sample with a good recovery was collected from HUD12-03C (Table 3-8). The
analytical results of this sample are presented in Appendix B. The coal is dull with minor
bright bands and solid to broken.

5.1.9.1 Interval between I-Seam and J-Seam

J-Seam lies 5 metres to 20.82 metres (true thickness) below I-Seam (Table 5-2). The
interval between I-Seam and J-Seam was crossed in 13 holes (Table 5-1).

5.1.10 J-Seam

Although J-Seam was intersected in 19 holes, it is not considered economic at this stage of
exploration, because of its narrow thickness and apparent lack of lateral continuity. Data from
9 holes were available, to calculate the true thickness of the I-J interval.

The true thickness of J-Seam was computed in 12 holes. The true thickness ranges from
0.23 metres to 2.03 metres, although the thickness exceeding 1 metre was encountered in five
holes. The average and median thicknesses are 0.99 metre and 0.90 metre respectively. The
apparent thickness ranges from 10 centimetres to 3.10 metres.

J-Seam consists of a single ply except in holes HUD13-05, HUD12-24, HUD12-23 and
HUD12-22 where two to three plies were recorded. Two samples with good to moderate
recovery were collected for analysis (Table 3-8). The results are presented in Appendix B.
The coal is bright and dull banded and commonly solid.
5.1.10.1 Interval between J-Seam and K-Seam

The interval between J-Seam and K-Seam was crossed in 6 holes (Table 5-2). The true thickness of the interval in five holes varies from 17 metres to 33 metres with average and median thicknesses of 26.42 metres and 28.11 metres.

5.1.11 K-Seam

K-Seam is the lowest correlatable seam in the investigated area. It was intersected in eight holes, although it appears that a number of other holes did not reach the depth of the K seam. The true thickness of seam calculated in five holes changes from 0.70 metres to 3.44 metres (Table 5-1). The thickness above 3 metres was found in two holes (HUD12-19 and HUD13-2C) which are few tens of metres apart. The average and median thicknesses are 1.75 metres and 1.11 metres respectively. The apparent thickness varies from 0.70 metres to 3.9 metres.

5.1.12 Lower Seams

Coal seams underlying K-Seam were intersected in HUD12-32, HUD13-01C, HUD13-03C, HUD13-05 and HUD13-06. These coals range in thickness from 0.08 metres to 0.69 metres and occur within an interval of 5 metres to 64 metres. Only HUD 13-03C and HUD13-05 intersected more than one seam.
6 Coal quality

Coal quality data for ‘current’ boreholes drilled in year-2012 and year-2013 are presented in Appendices B and C of this report. No coal-quality work was done in year-2011, owing to the non-coring nature of the drilling done in that year.

Appendix B deals with clean-coal quality, from core samples taken within year-2012 and year-2013. Appendix C presents petrographic data. Both of these appendices are presented on a confidential basis, owing to their dealing with clean-coal quality (no raw-coal quality work having been done at Hudette during the years covered by the present report).

6.1 Note concerning historic coal-quality data

The present report does not include a review of historic coal-quality information. Such data are available within historic coal-assessment reports covering the Hudette area and its vicinity, as referenced in Section 10 of this report.
7 Coal-resource estimation

Within the Hudette coal property, only its northern portion has been sufficiently drilled to be able to confidently establish its level of geological complexity. Within the Canadian national standard coal-resource estimation scheme (Hughes et al., 1989), the tight folding and moderate intensity of faulting at Hudette places it within the ‘complex’ tectonostratigraphic category, requiring the use of cross-sectioning methods as a means of resource estimation.

At its present density of drilling, Hudette has not yet been sufficiently-explored to support coal-resource estimation by cross-sectioning. Further exploration would be needed before any consideration could be given to the recognition of measured or indicated coal resources.
8 Reclamation

Drilling at Hudette during the years 2011 through 2013 required the construction of drill pads (upon which the drilling rig and associated equipment could be safely placed, with sufficient room for parking and movements of support vehicles), as well as the construction of new drill trails to reach sites which were not adequately served by existing trails and roads.

Disturbance associated with the year-2011 drilling programme was reduced by the choice to employ an air-rotary drill rather than a diamond-drill (which would have required the use of mud-based drilling fluids). Where possible, pre-existing trails were re-used in the course of the year-2012 and year-2013 drilling programmes, further reducing disturbance.

Substantial reclamation effort was undertaken after the completion of the year-2013 drilling programme. Drill sites were cleared of equipment, supplies and trash prior to removal of the drilling rigs.
9 Statement of costs

‘Current work’ within the Hudette coal property, for purposes of the present report, comprises exploratory work done between the years 2011 and 2013.

For the year-2011 drilling program, exploratory cost is available from exploration department files, but these data are not accessible for the years 2012 and 2013 programs. Years 2012 and 2013 costs are therefore estimated, based on provincial average unit costs, following the methodology used by Cathyl-Huhn and Avery (2014) for costing of work done at Brule Mine.

Table 9-1 presents the resultant combination of known (year-2011) and estimated (year-2012/2013) costs.
Table 9-1: Estimated exploratory cost breakdown by activity

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotary-drilling</td>
<td>1586.42 metres</td>
<td>$269,470</td>
<td>7633.88 metres</td>
<td>$201.34/ metre</td>
<td>$153,705</td>
<td>661.42 metres</td>
<td>$201.34/ metre</td>
<td>$133,170</td>
<td>$556,345</td>
</tr>
<tr>
<td>Core-drilling</td>
<td>nil</td>
<td>nil</td>
<td>640.16 metres</td>
<td>$210.34/ metre</td>
<td>$134,651</td>
<td>991.9 metres</td>
<td>$210.34/ metre</td>
<td>$208,636</td>
<td>$343,287</td>
</tr>
<tr>
<td>Geophysical logging</td>
<td>1563.69 metres</td>
<td>$56,830</td>
<td>7976 metres</td>
<td>$17.56/ metre</td>
<td>$140,058</td>
<td>1646.25 metres</td>
<td>$17.56/ metre</td>
<td>$28,869</td>
<td>$225,757</td>
</tr>
<tr>
<td>Roadwork</td>
<td>unknown length</td>
<td>$220,888</td>
<td>(based on 8274.04 metres of drilling)</td>
<td>$23.30/ metre</td>
<td>$192,785.1</td>
<td>unknown length</td>
<td>$148,200</td>
<td>$561,873</td>
<td></td>
</tr>
<tr>
<td>Analytical work</td>
<td>nil</td>
<td>nil</td>
<td>20 samples</td>
<td>$2,777</td>
<td>(based on 992 metres of cored boreholes)</td>
<td>$78,993 (estimated)</td>
<td>$81,770</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>$547,188</td>
<td></td>
<td>$623,976</td>
<td></td>
<td></td>
<td>$597,868</td>
<td></td>
<td>$1,769,032</td>
</tr>
</tbody>
</table>

Notes: unit costs are on per-metre drilled length basis, derived from provincial average unit-costs (see Bouchard (2011) report on behalf of Natural Resources Canada. Geophysical log metreage is slightly lower than drilled metreage, as not all boreholes could be logged, and logging often starts slightly above the bottoms of holes. Breakdown of coring vs. non-coring costs is not available for year-2013 drilling.
10 References

Bouchard, G.

Carmichael, S. M. M.
1983: Sedimentology of the Lower Cretaceous Gates and Moosebar Formations, northeast coalfields, British Columbia; *University of British Columbia*, unpublished Ph.D. dissertation..

Cathyl-Huhn, C.G.

Cathyl-Huhn, C.G. and Avery, L.R.

Duff, P.McL.D. and Gilchrist, R.D.

Dyson, P.

Coal Assessment Report for the Hudette coal property, British Columbia

Gibson, D.

Hovis, S.T., Crawford, J. and Coombes, S.F.

Hughes, J.D., Klatzel-Mudry, L., and Nikols, D.J.

Hughes, J.E.

Kilby, W.

Klatzel-Mudry, L., Horgan, J. and Hallas, D.

Klatzel-Mudry, L., Horgan, J., Hallas, D. and Wright, B.
1984: Geology of the Falling Creek property; unpublished report PR - Falling Creek 83(1)A, on behalf of Esso Resources Ltd.; British Columbia Geological Survey Branch, Coal Assessment Report No. 525.

Legun, A.S.

MacKenzie, A.
1801: Voyages from Montreal on the River St. Lawrence, through the continent of North America, to the Frozen and Pacific Oceans in the years 1789 and 1793; Cadell, London, 412 pages.

McLearn, F.H.

McLean, J.R.

McKechnie, N.D.
1955: Coal reserves of the Hasler Creek - Pine River area, British Columbia; *British Columbia Department of Mines*, Bulletin 36.

Newson, A.C.

Newson, A.C.

Panchy, E.G.

Ryan, B.
2002: Coal in British Columbia; British Columbia Ministry of Energy and Mines and Responsible for Core Review, website accessed December 17, 2014 via http://www.empr.gov.bc.ca/Mining/Geoscience/Coal/CoalBC/Pages/default.aspx

Spivak, J.

Stott, D.F.

Sultan, M. and Cathyl-Huhn, C.G.

Thompson, R.I.
1979: A structural interpretation across part of the northern Rocky Mountains, British Columbia, Canada; Canadian Journal of Earth Sciences, volume 16, pages 1228 to 1241.
11 Conclusions

The stratigraphic sequence in the Hudette property includes, from top to bottom, the lower part of the Moosebar Formation, the Gething Formation, and the Dresser Formation. Most of the property is underlain by the Early Cretaceous Gething Formation, which hosts all of the known coal occurrences. More than thirteen coal seams were intersected by drilling within the Gething Formation. Results of geological mapping and exploratory drilling, conducted between 2011 and 2013, suggest that potentially-mineable coal seams occur within the upper 85 metres (here designated as the ‘Upper Gething’) of the Gething Formation.

Fifty-six boreholes were drilled within the Hudette property during 2011-2013. Four coal seams, designated as seams B, C, D, and F, appear to be particularly attractive for mining, at the current stage of exploration. F-seam is the most prospective of the coals, on the basis of its thickness and consistent development.

The Mink Creek coal property is structurally-complex, characterised by thrust faulting and tight folding. For this reason, the tectonostratigraphic geology type of the property is considered to be complex, in keeping with the Canadian national standards proposed by Hughes and others (1989).

A closely-spaced drilling programme will be required to better establish the property’s geology, as well as allow a formal coal-resource estimate.

Estimated exploratory costs to date, covering year-2011 through year-2013 activities, are $1,769,032. The Hudette coal property is regarded as being a property of merit.
12 Statement of qualification

I, Muzaffer Sultan P.Geo.(BC), do hereby certify that:

a) I am currently employed on a full-time basis by Walter Canadian Coal Partnership, a subsidiary of Walter Energy, in their Canadian office in Tumbler Ridge, British Columbia.

b) This certificate applies to the current report, titled *Coal Assessment Report for the Hudette coal licences, British Columbia*, dated June 24, 2015.

c) I am a member (Professional Geoscientist, Licence No. 34690) of the Association of Professional Engineers and Geoscientists of British Columbia. I have worked as a geologist for over 41 years since my graduation from university.

d) I certify that by reason of my education, affiliation with a professional association, and past relevant work experience, having written numerous published and private geological reports and technical papers, that I am qualified as a Qualified Person as defined by Canadian National Instrument 43-101.

e) My most recent visit to the Hudette coal property was in July 2014.

f) I am the author of this report, titled *Coal Assessment Report for the Hudette coal licences, British Columbia*, dated June 24, 2015, concerning the Hudette coal property.

g) As of the date of the writing of this report, I am not independent of Walter Canadian Coal Partnership and Walter Energy, pursuant to the tests in Section 1.4 of National Instrument 43-101.

“original signed and sealed by” M. Sultan P.Geo.
Appendix A: Geophysical logs and other borehole data

Copies of core descriptions, for those boreholes from which cores were taken, are presented in digital format; in this case, Excel files have been provided. Table A-1 summarises the core intervals in spot coring holes as well as drill holes with continuous core. The photographs of cores are also presented in digital format; core intervals photographed are summarised in Table A-1 in comments column.

<table>
<thead>
<tr>
<th>Borehole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Length (m)</th>
<th>Core Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD11-01C</td>
<td>38.1</td>
<td>52.16</td>
<td>14.06</td>
<td>Spot</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>104.55</td>
<td>121.92</td>
<td>17.37</td>
<td>Spot</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>72.85</td>
<td>85.04</td>
<td>12.19</td>
<td>Spot</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>127.71</td>
<td>149.4</td>
<td>21.69</td>
<td>Spot</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>154.23</td>
<td>160.02</td>
<td>5.79</td>
<td>Spot</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD12-21C</td>
<td>39.32</td>
<td>43.28</td>
<td>3.96</td>
<td>Spot</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD12-21C</td>
<td>101.19</td>
<td>116.07</td>
<td>14.88</td>
<td>Spot</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>6.1</td>
<td>17.37</td>
<td>11.27</td>
<td>Spot</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>174.04</td>
<td>201.78</td>
<td>27.74</td>
<td>Spot</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>0</td>
<td>110</td>
<td>110</td>
<td>Continuous</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>0</td>
<td>251</td>
<td>251</td>
<td>Continuous</td>
<td>Photographed</td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>0</td>
<td>182</td>
<td>182</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>HUD13-04</td>
<td>75.59</td>
<td>82.46</td>
<td>6.87</td>
<td>Spot</td>
<td></td>
</tr>
<tr>
<td>HUD13-04</td>
<td>192.02</td>
<td>197.45</td>
<td>5.43</td>
<td>Spot</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>30</td>
<td>35.66</td>
<td>5.66</td>
<td>Spot</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>50.29</td>
<td>56.38</td>
<td>6.09</td>
<td>Spot</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>77.72</td>
<td>80.72</td>
<td>3</td>
<td>Spot</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>115.82</td>
<td>117.65</td>
<td>1.83</td>
<td>Spot</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>145</td>
<td>148.13</td>
<td>3.13</td>
<td>Spot</td>
<td></td>
</tr>
</tbody>
</table>

Geophysical logs run in current (year-2011 through year-2013) boreholes are summarised in Table A-2. Copies of these logs are submitted as digital files accompanying this report, in both LAS and TIF format where available. Note that that in some boreholes only a minimal suite of logs were obtained, owing to poor ground conditions necessitating the running of geophysical tools inside drilling-rods.
Coal Assessment Report for the Hudette coal property, British Columbia

Table A-2: Geophysical logs run in current boreholes

<table>
<thead>
<tr>
<th>Borehole</th>
<th>Easting NAD83</th>
<th>Northing NAD83</th>
<th>Elevation (m)</th>
<th>Total Depth (m)</th>
<th>Gamma/Neutron</th>
<th>Deviation</th>
<th>Dipmeter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD11-01</td>
<td>556021.559</td>
<td>6147896.61</td>
<td>1305.62</td>
<td>176.78</td>
<td>173.21</td>
<td>173.42</td>
<td>173.21</td>
<td></td>
</tr>
<tr>
<td>HUD11-02</td>
<td>555778.768</td>
<td>6147907.19</td>
<td>1327.854</td>
<td>220.06</td>
<td>216.79</td>
<td>217.05</td>
<td>216.86</td>
<td></td>
</tr>
<tr>
<td>HUD11-03</td>
<td>556325.245</td>
<td>6147854.24</td>
<td>1306.719</td>
<td>177</td>
<td>176.63</td>
<td>176.67</td>
<td>176.48</td>
<td></td>
</tr>
<tr>
<td>HUD11-04</td>
<td>556246.549</td>
<td>6147767.82</td>
<td>1314.866</td>
<td>170.68</td>
<td>170.44</td>
<td>170.54</td>
<td>170.34</td>
<td></td>
</tr>
<tr>
<td>HUD11-05</td>
<td>556429.398</td>
<td>6147619.5</td>
<td>1319.342</td>
<td>171.29</td>
<td>169.45</td>
<td>168.93</td>
<td>168.74</td>
<td></td>
</tr>
<tr>
<td>HUD11-06</td>
<td>555554.409</td>
<td>6148210.3</td>
<td>1187.064</td>
<td>65.53</td>
<td>59.36</td>
<td>59.12</td>
<td>58.92</td>
<td></td>
</tr>
<tr>
<td>HUD11-07</td>
<td>555851.179</td>
<td>6148185.77</td>
<td>1190.397</td>
<td>243.84</td>
<td>242.58</td>
<td>242.44</td>
<td>242.24</td>
<td>241.5</td>
</tr>
<tr>
<td>HUD11-08</td>
<td>555854.232</td>
<td>6148187.48</td>
<td>1191.954</td>
<td>216.46</td>
<td>212.35</td>
<td>212.37</td>
<td>212</td>
<td>211.5</td>
</tr>
<tr>
<td>HUD11-09</td>
<td>556698.394</td>
<td>6147412.51</td>
<td>1277.825</td>
<td>144.78</td>
<td>142.23</td>
<td>142.25</td>
<td>142.06</td>
<td></td>
</tr>
<tr>
<td>HUD11-01C</td>
<td>556021.559</td>
<td>6147896.61</td>
<td>1305.62</td>
<td>122.92</td>
<td>122.5</td>
<td>122.42</td>
<td>122.22</td>
<td></td>
</tr>
<tr>
<td>HUD11-07C</td>
<td>555851.179</td>
<td>6148185.77</td>
<td>1190.397</td>
<td>160.02</td>
<td>159.44</td>
<td>159.5</td>
<td>159.3</td>
<td></td>
</tr>
<tr>
<td>HUD12-01</td>
<td>556020.759</td>
<td>6147382.28</td>
<td>1292.957</td>
<td>234.69</td>
<td>229.85</td>
<td>230.4</td>
<td>230.2</td>
<td></td>
</tr>
<tr>
<td>HUD12-02</td>
<td>555201.853</td>
<td>6148570.56</td>
<td>1126.995</td>
<td>187.45</td>
<td>186.4</td>
<td>186.44</td>
<td>186.24</td>
<td></td>
</tr>
<tr>
<td>HUD12-03</td>
<td>555607.376</td>
<td>6148330.32</td>
<td>1149.073</td>
<td>225.52</td>
<td>224.33</td>
<td>211.8</td>
<td>211.68</td>
<td>223.5</td>
</tr>
<tr>
<td>HUD12-04</td>
<td>556546.288</td>
<td>6147761.42</td>
<td>1321.636</td>
<td>247.88</td>
<td>247.46</td>
<td>90.08</td>
<td>89.5</td>
<td></td>
</tr>
<tr>
<td>HUD12-05</td>
<td>555726.238</td>
<td>6147655.42</td>
<td>1303.013</td>
<td>124.96</td>
<td>88.24</td>
<td>92</td>
<td>91.8</td>
<td></td>
</tr>
<tr>
<td>HUD12-06</td>
<td>556472.887</td>
<td>6148092.22</td>
<td>1291.298</td>
<td>240.79</td>
<td>239.24</td>
<td>239.18</td>
<td>238.98</td>
<td>238.5</td>
</tr>
<tr>
<td>HUD12-07</td>
<td>556093.89</td>
<td>6148000.29</td>
<td>1257.598</td>
<td>192.02</td>
<td>190.48</td>
<td>190.6</td>
<td>190.4</td>
<td>190</td>
</tr>
<tr>
<td>HUD12-08</td>
<td>556595.161</td>
<td>6148235.57</td>
<td>1279.571</td>
<td>213.36</td>
<td>211.52</td>
<td>212.03</td>
<td>211.84</td>
<td>211.5</td>
</tr>
<tr>
<td>HUD12-09</td>
<td>556810.651</td>
<td>6147865.62</td>
<td>1298.987</td>
<td>210.31</td>
<td>206.04</td>
<td>205.37</td>
<td>205.18</td>
<td>200</td>
</tr>
<tr>
<td>HUD12-10</td>
<td>556786.637</td>
<td>6147584.11</td>
<td>1279.683</td>
<td>249.93</td>
<td>242.88</td>
<td>242.96</td>
<td>242.76</td>
<td>241.5</td>
</tr>
<tr>
<td>HUD12-11</td>
<td>556556.222</td>
<td>6147500.8</td>
<td>1275.184</td>
<td>240.79</td>
<td>235.08</td>
<td>235.58</td>
<td>235.38</td>
<td></td>
</tr>
<tr>
<td>HUD12-12</td>
<td>555993.804</td>
<td>6148351.07</td>
<td>1240.787</td>
<td>184.4</td>
<td>183.54</td>
<td>183.46</td>
<td>183.26</td>
<td>183</td>
</tr>
<tr>
<td>HUD12-13</td>
<td>555992.605</td>
<td>6148348.66</td>
<td>1235.37</td>
<td>259.08</td>
<td>208.03</td>
<td>214.64</td>
<td>214.44</td>
<td>206</td>
</tr>
<tr>
<td>HUD12-14</td>
<td>556897.626</td>
<td>6147275.75</td>
<td>1263.059</td>
<td>243.84</td>
<td>242.82</td>
<td>243.06</td>
<td>242.86</td>
<td></td>
</tr>
<tr>
<td>HUD12-15</td>
<td>556244.411</td>
<td>6148195.49</td>
<td>1299.045</td>
<td>195.07</td>
<td>193.05</td>
<td>192.97</td>
<td>192.78</td>
<td>192.05</td>
</tr>
<tr>
<td>HUD12-16</td>
<td>557189.425</td>
<td>6147110.07</td>
<td>1210.341</td>
<td>252.98</td>
<td>250.74</td>
<td>250.76</td>
<td>250.56</td>
<td></td>
</tr>
<tr>
<td>HUD12-17</td>
<td>556352.742</td>
<td>6148351.25</td>
<td>1277.598</td>
<td>97.53</td>
<td>92.34</td>
<td>92.46</td>
<td>92.26</td>
<td></td>
</tr>
</tbody>
</table>
Table A-2: Geophysical logs run in current boreholes (continued)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>Easting NAD83</th>
<th>Northing NAD83</th>
<th>Elevation (m)</th>
<th>Total Depth (m)</th>
<th>Gamma/Caliper/Resistivity/Density</th>
<th>Gamma/Neutron</th>
<th>Deviation</th>
<th>Dipmeter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD12-18</td>
<td>557426.679</td>
<td>6147037.93</td>
<td>1179.417</td>
<td>210.31</td>
<td>209.49</td>
<td>209.51</td>
<td>209.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-19</td>
<td>556347.494</td>
<td>6148344.64</td>
<td>1277.424</td>
<td>251.46</td>
<td>249.96</td>
<td>249.9</td>
<td>249.7</td>
<td>249.5</td>
<td></td>
</tr>
<tr>
<td>HUD12-20</td>
<td>557286.161</td>
<td>6147379.65</td>
<td>1257.962</td>
<td>249.93</td>
<td>248.71</td>
<td>248.73</td>
<td>248.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-21</td>
<td>556804.515</td>
<td>6147858.59</td>
<td>1299.372</td>
<td>251.46</td>
<td>160.06</td>
<td>159.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-21C</td>
<td>556806.465</td>
<td>6147858.81</td>
<td>1299.616</td>
<td>251.46</td>
<td>146.54</td>
<td>146.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-22</td>
<td>556810.565</td>
<td>6148567.99</td>
<td>1259.631</td>
<td>250.19</td>
<td>240.37</td>
<td>240.18</td>
<td>239.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-23</td>
<td>556614.906</td>
<td>6148468</td>
<td>1279.368</td>
<td>237.74</td>
<td>232.99</td>
<td>232.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-24</td>
<td>557170.414</td>
<td>6148394.41</td>
<td>1283.039</td>
<td>296.7</td>
<td>296.31</td>
<td>296.35</td>
<td>296.16</td>
<td>295.5</td>
<td></td>
</tr>
<tr>
<td>HUD12-25</td>
<td>557764.184</td>
<td>6147791.68</td>
<td>1326.418</td>
<td>259.08</td>
<td>257.84</td>
<td>257.89</td>
<td>257.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-26</td>
<td>557167.471</td>
<td>6147887.06</td>
<td>1259.732</td>
<td>210.31</td>
<td>173.43</td>
<td>173.37</td>
<td>173.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-27</td>
<td>557167.938</td>
<td>6147887.62</td>
<td>1259.933</td>
<td>85.29</td>
<td>84.2</td>
<td>84.12</td>
<td></td>
<td>83.92</td>
<td></td>
</tr>
<tr>
<td>HUD12-28</td>
<td>560217.874</td>
<td>6148910.58</td>
<td>1312.711</td>
<td>252.98</td>
<td>252.13</td>
<td>252.05</td>
<td>251.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-29</td>
<td>556580.853</td>
<td>6148922.98</td>
<td>1327.379</td>
<td>232.52</td>
<td>230.72</td>
<td>230.76</td>
<td>230.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-30</td>
<td>556567.305</td>
<td>6149178.54</td>
<td>1311.241</td>
<td>249.93</td>
<td>227.76</td>
<td>227.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-31</td>
<td>555992.219</td>
<td>6149146.73</td>
<td>1329.129</td>
<td>249.93</td>
<td>248.53</td>
<td>248.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-31C</td>
<td>555989.392</td>
<td>6149141.16</td>
<td>1328.285</td>
<td>240.79</td>
<td>236.69</td>
<td>237.07</td>
<td>236.88</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>HUD12-32</td>
<td>555714.734</td>
<td>6148735.36</td>
<td>1305.794</td>
<td>249.93</td>
<td>249.21</td>
<td>249.27</td>
<td>249.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD12-33</td>
<td>555860.62</td>
<td>6148601.76</td>
<td>1246.386</td>
<td>249.93</td>
<td>247.91</td>
<td>248.43</td>
<td>248.24</td>
<td>247</td>
<td>West of property</td>
</tr>
<tr>
<td>HUD12-34</td>
<td>555754.252</td>
<td>6148542.78</td>
<td>1236.929</td>
<td>249.94</td>
<td>243.97</td>
<td>246.18</td>
<td>245.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD13-01C</td>
<td>555758.30</td>
<td>6147908.00</td>
<td>1325.07</td>
<td>110</td>
<td>109.63</td>
<td>109.49</td>
<td>109.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD13-02C</td>
<td>556337.40</td>
<td>6148335.00</td>
<td>1281.201</td>
<td>252</td>
<td>251.12</td>
<td>251.04</td>
<td>251.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD13-03C</td>
<td>555187.90</td>
<td>6148487.00</td>
<td>1139.78</td>
<td>182.5</td>
<td>181.83</td>
<td>181.77</td>
<td>181.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD13-04</td>
<td>556466</td>
<td>6148758</td>
<td>1308</td>
<td>199</td>
<td>197.45</td>
<td>188.06</td>
<td>197.59</td>
<td>196.5</td>
<td></td>
</tr>
<tr>
<td>HUD13-05</td>
<td>556737</td>
<td>6148438</td>
<td>1288</td>
<td>188.97</td>
<td>188.07</td>
<td>188.06</td>
<td>187.86</td>
<td>187.5</td>
<td></td>
</tr>
</tbody>
</table>
Table A-2: Geophysical logs run in current boreholes (concluded)

<table>
<thead>
<tr>
<th>Borehole</th>
<th>Easting NAD83</th>
<th>Northing NAD83</th>
<th>Elevation (m)</th>
<th>Total Depth (m)</th>
<th>Gamma/Caliper/Resistivity/Density</th>
<th>Gamma/Neutron</th>
<th>Deviation</th>
<th>Dipmeter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUD13-06</td>
<td>556004.29</td>
<td>6147626.2</td>
<td>1317.121</td>
<td>208.26</td>
<td>207.7</td>
<td>207.32</td>
<td>207.12</td>
<td>151.5</td>
<td></td>
</tr>
<tr>
<td>HUD13-07</td>
<td>555321.784</td>
<td>6147938.35</td>
<td>1191.231</td>
<td>240.79</td>
<td>240.75</td>
<td>240.71</td>
<td>240.52</td>
<td>239.5</td>
<td></td>
</tr>
<tr>
<td>HUD13-07C</td>
<td>555321.784</td>
<td>6147938.35</td>
<td>1191.231</td>
<td>59.43</td>
<td>58.53</td>
<td>58.88</td>
<td>58.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD13-08</td>
<td>556446.229</td>
<td>6147895.16</td>
<td>1311.11</td>
<td>213.36</td>
<td>210.72</td>
<td>210.82</td>
<td>210.62</td>
<td>210</td>
<td></td>
</tr>
</tbody>
</table>